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Large scale, elongated structures, similar those ones widely studied in wall-bounded flows,
are also present in turbulent jets. Several characteristics of these streaks can be identified
via reduced order models such as resolvent analysis. The present work involves a resolvent-
based study of these structures in turbulent jets. We focus on obtaining the optimal forcing
that generates these energetic coherent structures. Results are compared with experimental
data post-processed using spectral proper orthogonal decomposition, allowing us to draw
conclusions about the nature of the non-linear forcing, since the two analyses should provide
equivalent results if this term is modelled as spatially white. By identifying streaks in a global
framework, we expect to better understand the mechanism by which they are generated.

I. Introduction

Coherent structures have been studied in turbulent flows in several frameworks. In turbulent jets, the identification
of hydrodynamic wavepackets, whose spatial evolution is largely controlled by the Kelvin-Helmholtz instability,

led to several important conclusions regarding jet noise [1, 2]. For wall-bounded turbulence, researchers have been
focusing on streamwise elongated structures in the near-wall region, called streaks, that play an important role in the
dynamics of these kinds of flows [3], especially in terms of the turbulent kinetic energy production process [4]. These
streaks are forced by streamwise vortices in a self-sustaining process that has been proposed as one of the foundations
of turbulence dynamics [5–8]. Farther from the wall, similar streaky structures are also observed; these are referred
to as superstructures [9] and are also thought to result from a similar self-sustaining process [10]. Elongated streaky
structures, similar to those ubiquitous in wall-bounded turbulence, have recently been found in turbulent jets [11], and
their characteristics greatly ressemble superstructures found in turbulent boundary layers.

The presence of streaks in shear flows is due to the lift-up effect. This phenomenon was first studied by Ellingsen &
Palm [12], who analysed the stability of homogeneous sheared flow, showing that disturbances can here be amplified by a
linear, non-modal mechanism. This phenomenon tends to create streamwise elongated, alternating high-low streamwise
velocity regions over the span, coupled with streamwise vortices; these transfer momentum from high to low velocity
regions (when a positive streak occurs), the opposite occuring for a negative streak. Previous studies have identified
this phenomenon in several confined sheared flows in the locally parallel framework [13, 14], and three dimensional
computations confirm this behaviour for spatially evolving wall-bounded flows [15–17].

Several methods can be used to analyse the dynamics of streaks and streamwise vortices in wall-bounded flows. One
of them, described in previous work [14, 18, 19], focuses on finding optimal forcing of the linearised Navier-Stokes
system. This forcing will be related to the most amplified structure in the flow, leading to relevant information about
how it is generated and, consequently, how it might be damped. Moreover, resolvent modes have a direct relationship
with energetic structures observed experimentally; in fact, the response modes provided by resolvent analysis should
be exactly equal to those obtained by spectral proper orthogonal decomposition of experimental data, if the forcing is
white noise in space [20]. Other approaches can also be used for this problem. For instance, transient growth analysis
[14], focuses on finding initial disturbance that will be most amplified in the flow, resulting in conclusions about the
time evolution of these structures. Both analyses have been used in the identification of streaks in turbulent jets [11],
using the locally parallel framework, focusing on streamwise wavenumber kx = 0. Global analysis, which considers
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disturbances varying in the streamwise direction, leads to results with valuable information about the evolution of
streaks, and provides a framework for comparison with spectral proper orthogonal decomposition modes. Similar tools
have been used in turbulent jets to identify Kelvin-Helmholtz wavepackets [20–22], and the application of these tools
may provide new understanding on the role of the lift-up effect in jets.

This paper focuses on the application of the aforementioned method to turbulent jets, so as to model large-scale
streaky structures in the velocity field. We perform global resolvent analysis focusing on low Strouhal numbers and
compare with spectral proper orthogonal decomposition from a M = 0.4 turbulent jet. The results lead to conclusions
about the optimal forcing that generates streaks, which we consider in the framework of the lift-up effect. The remainder
of the paper is organised as follows: in section II, we describe the mathematical formulation of global resolvent analysis
and spectral proper orthogonal decomposition (SPOD), where some details about the numerical computations are also
provided. This is followed by the analysis of SPOD and global resolvent results (in section III) for several azimuthal
wavenumbers, where a mechanism for the generation of streaks is proposed. The paper is then closed by a summary of
the main conclusions in section IV.

II. Mathematical model

A. Spectral Proper Orthogonal Decomposition
Spectral proper orthogonal decomposition (SPOD) aims at identifying the most energetic coherent structures in a

given database. To do so, we firstly decompose the turbulent field in temporal mean and fluctuation as

ũ(x, t) = U(x) + u′(x, t) (1)

where x = (x, r, θ). Afterwards, we Fourier transform the fluctuations in time and azimuth. Following [1, 23], we can
write the SPOD integral equation as:∫

Ω

R(x, x ′, r, r ′,m, ω)ξ(x ′, r ′,m, ω)r ′dr ′dx ′ = σ(m, ω)ξ(x, r,m, ω) (2)

where R is the two-point cross-spectral tensor of the velocity fluctuations. Equation 2 is an eigenvalue problem, where σ
is the eigenvalue and ξ is the corresponding eigenfunction. As the cross-spectral tensor is Hermitian, eigenvalue problem
leads to real eigenvalues σ (each of them proportional to the energy of the mode), and orthonormal eigenfunctions ξ,
which define the shape of the modes. It is shown by [20] that the SPOD modes should match the resolvent modes if the
non-linear forcing is white noise in space, which gives us ground for the comparison between these two analyses.

The SPOD is applied to the same database studied in [11, 24]. Dual-plane time-resolved stereoscopic particle image
velocimetry (PIV) was used to obtain the cross-spectral matrix for each azimuthal wavenumber for a Re = 4.6 × 105

turbulent jet with Mach M = 0.4. The instantaneous velocity fields were interpolated onto a polar grid for r/D ≤ 0.8,
and the axial positions of the PIV planes (x1, x2) were varied between 1 ≤ x1/D ≤ 8 and x1/D ≤ x2/D ≤ 8, with
spacing ∆x = 0.5D. The cross-spectral density (CSD) matrix of the PIV data is obtained using the Welch periodogram
technique with blocks of n f f t = 128 samples, with overlap of 50%. A standard Hann tapering window was applied to
all blocks of data to minimise spectral leakage. More details on the experimental setup and on the data processing can
be found in [24].

B. Resolvent Analysis
The resolvent analysis focuses on finding forcings that will lead to the most amplified response in the flow. By

analysing forcing and response modes, we can gather information about the relevant structures inside the turbulent
media and the forces that would generate them. Following the formulation from Schmidt et al. [22], we can rearrange
the equations, leading to the linearised Navier-Stokes system in the input-output form:

∂q
∂t
= Lq + Bf (3)

φ = Cq, (4)

where all quantities are Fourier transformed in azimuth (m is the azimuthal wavenumber), q(x, r,m, t) is the state vector,
which is a function of the flow variables, and f(x, r,m, t) is the forcing term, which is considered to gather the non-linear
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terms. Equation 3 describes the time evolution of the disturbances by the operator L, and equation 4 defines the output
of the system φ(x, r,m, t). Assuming that the linear operator L is stable, we can merge these equations in order to obtain
a frequency response function between input and output. By further Fourier transforming these quantities in time, one
can write

[−iωI − L]q̂ = Bf̂ (5)
⇒ q̂ = [−iωI − L]−1Bf̂, (6)

which leads to

φ̂ = C[−iωI − L]−1Bf̂ = Rf̂, (7)

where the resolvent operator is given by R = C[−iωI − L]−1B, and the “hats” indicate Fourier transformed variables. By
performing a singular value decomposition (SVD) of this operator, one can find the optimal forcing f̂ of the flow so that

s2
1 = max f

{
〈Rf̂,Rf̂〉
〈f̂, f̂〉

}
, (8)

where s1 is the gain related to the most amplified forcing, or the first singular mode.
This formulation is implemented numerically as in [22]. The computations were performed in MATLAB, with

the resolvent operator built to ensure the energy norm in the SVD computations. Since the forcing term is considered
to combine the non-linear terms of the linearised Navier-Stokes equations, a weight matrix is implemented to benefit
regions where the turbulent kinetic energy (computed from a large-eddy simulation) is higher. All computations were
performed for a M = 0.4 jet, with mean flow derived from the same large-eddy simulation, for Re = 3 × 104 and
St = 0.05. Since SPOD was evaluated for x/D ≤ 8, we restrict the domain to a similar region (0 ≤ x/D ≤ 10), and a
sponge zone is implemented between 10 ≤ x/D ≤ 14 and between −1 ≤ x/D ≤ 0. With this domain, we focus on the
forcings and responses related to the dominant mechanism in regions closer to the nozzle (x/D ≤ 10), which is also the
region where SPOD seeks the most energetic structures. Therefore, both analyses concern the structures generated
where linear mechanisms are important, especially for the generation of coherent structures that might play a role in the
jet dynamics.

III. Results
The main objective of this work is to study the lift-up mechanism in a turbulent jet. Therefore, considering that this

phenomenon is more clearly seen in the low frequency range, we performed the analysis for non-dimensional frequency
St = 0.05, due to the high computational cost of performing global resolvent computations for St = 0. Spectral proper
orthogonal decomposition (SPOD) modes are also evaluated at this frequency, and, although the Reynolds number in
both analyses differ, this method will provide a reference for comparison with resolvent modes. It is known from [20]
that SPOD and resolvent modes should match if the the forcing term is uncorrelated in space, which can be a strong
assumption for a turbulent flow. However, if the optimal forcing has a gain much larger than suboptimal ones, flow
fluctuations are dominated by the optimal response [20, 25]; thus, resolvent analysis has been useful in the determination
of the underlying mechanisms in wall-bounded [15, 17] and free-shear flows [20–22, 26], encouraging the application
of the method for this flow to better understand the role of the lift-up effect in a turbulent jet.
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Figure 1 First four SPOD energies and resolvent gains for several azimuthal modes and St = 0.05.

The SPOD-mode energies for the first 4 modes is shown in figure 1(a), showing a dominance of the first mode in the
low azimuthal wavenumber region, with the difference between optimal and suboptimal decreasing as we shift to higher
values of m. This dominance is usually related to a preeminence of a physical mechanism (such as the Kelvin-Helmhotlz
instability or the lift-up effect); in [11], the same dominance was identified for St = 0, with gains peaking at m = 3.
Further analysis led to the conclusion that the coherent structure related to that peak was a low-azimuthal wavenumber
streak. For the present case, though, this dominance for resolvent gains is not as strong, and there are several differences
between the two curves. First, while the gains decrease as we increase the values of m for the SPOD, resolvent gains
almost reach a plateau for higher azimuthal wavenumbers. There are some possible reasons for this difference: in the
experiment, some of the forcing may be localised inside the nozzle (including a turbulent boundary layer, which is also
dominated by streaks), which is not included in the resolvent calculation. This can provide a more effective forcing for
low-order azimuthal modes. Another possibility is that the spatial white-noise assumption for the forcing is too strong
for this flow. If that is the case, the azimuthal spectrum of the non-linear term of the flow can cause low-order azimuthal
modes to be forced more strongly than higher ones.

In some sense, the results shown in figure 1(a,b) are similar to what was found by [26] concerning the behaviour of
optimals and suboptimals as a function of frequency. As in the previous work, the two curves can be very different
from each other and still point to the same mechanism (in their case, the Kelvin-Helmholtz instability). In this case,
the differences might be related to the assumptions of the resolvent model, such as the enforcement of uncorrelated
forcing in space (with the same amplitude for all m), and the weight matrix in the resolvent analysis, which benefits
regions with higher turbulent kinetic energy, a feature not yet implemented in the SPOD computations. Also, SPOD
was computed using only the streamwise component of the velocity, while resolvent analysis takes into account all
velocity components for the energy norm. Another possibility is the Reynolds numbers difference between the two
cases, which could also explain the difference in amplitude of the gains, since resolvent gains scale with Re2 for the
lift-up mechanism [14]. Nevertheless, the gains from both analyses are related to elongated structures in the streamwise
direction, as is shown in figure 2.
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Figure 2 Isocontours of 40% of the real part of the first SPOD mode (left) and first resolvent mode (right) for
St = 0.05 and m = 7 (streamwise component).
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Figure 3 Real part of the first (left) and second (right) SPODmodes for St = 0.05 and several azimuthal modes
(streamwise component).

We now focus on the analysis of the shapes of the resolvent and SPOD modes. For that, three wavenumbers were
chosen as representative of the phenomenon we want to analyse: m = 3 is the peak wavenumber of streaks for this
turbulent jet (from [11]); m = 7; 10 are wavenumbers whose SPODmodes have higher amplitudes in the region upstream
of the jet; also, the streaky behaviour of the disturbances is clearer for these last cases. The shape of the streamwise
component of the two first SPOD modes for these wavenumbers can be seen in figure 3. The first feature shown in all
modes of figure 3 is their wavy behaviour in the streamwise direction; since we are looking at non-zero frequency, a
non-zero azimuthal phase velocity induces oscillations in the (x, r) plane, which will lead to slightly rotating streaks in
the field. This is more clearly seen in figure 2(a), where isosurfaces of 40% of the streamwise velocity for m = 7 are
shown, highlighting the streaky behaviour of these structures. Some other features of figure 3 are similar to the findings
reported in [11], especially the decrease in size of the streaks (in both axial and radial direction) and their movement
towards the nozzle/lipline for increasing m. The second SPOD mode keep these characteristics, but it also displays a
higher number of oscillations in the streamwise direction, which is a reflex of a higher twist of the streaks in azimuth,
leading to streaks with stronger variation in the azimuthal direction. This can also be related to the meandering motion
of streaks [9]; since this is a secondary effect on the structures, it is here identified in the second and higher order SPOD
modes.

The structure of the first response mode in resolvent analysis is the quantity that can be compared with the first
SPOD mode. The streamwise component of the response u is depicted together with the radial component of the forcing
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fr in figure 4. These components (together with the azimuthal component of the forcing) are the most relevant for this
frequency-wavenumber combinations (the streamwise component of the forcing, for instance, is one order of magnitude
lower for these cases, similarly for the other components of the response). These are also representative of the lift-up
effect, where streaks of streamwise velocity are forced by streamwise vortices (forcing in the radial and azimuthal
directions). The oscillations found in the SPOD modes are also present for this case, keeping the characteristic swirl
of these streaks (as also shown in figure 2(b)). The response modes also follow some of the the trends identified for
the SPOD modes, with structures more and more concentrated radially in the lipline. Still, there are clear differences
between SPOD and resolvent modes, especially concerning their radial and axial support. Response modes are rather
concentrated in the lipline, which is expected due to the higher shear in that region, and much more spread in the
streamwise direction. The Reynolds number can change the spatial support of the modes due to the molecular diffusion
mechanism, but a decrease in Reynolds would also damp the mechanism. One possibility is that this difference is
related to the restriction applied to the forcing (via turbulent kinetic energy values), but it is more likely linked with
the assumption of uncorrelated forcing in space. Previous works [27] have shown that standard resolvent analysis can
provide results more concentrated spatially than the expected, an effect that can be remediable with the inclusion of an
eddy viscosity, which would be equivalent to considering a covariance of the forcing different from the identity in the
standard linearised Navier-Stokes system, with molecular viscosity. The statistics of the non-linear terms in the real flow
might be the main source of divergence between both analyses, since the spatial evolution of the turbulent boundary
layer inside the nozzle is not taken into account in the resolvent.
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Figure 4 First resolvent mode for St = 0.05 and several azimuthal modes. Real part of the radial component
of the forcing (left) and real part of the streamwise component of the response (right) are shown.

With those differences clear, we can analyse more closely the new information brought by resolvent analysis: the
shapes of the forcing term and the other velocity components. First column of figure 4 shows the radial component of
the forcing mode for several values of m. Most of the remarks regarding the response modes are also valid here, since
the forcing follows the same behaviour of diminishing the spatial extent as the azimuthal wavenumber is increased. The
location of the forcing, on the other hand, is quite different from the response. Figure 4 shows that the forcing is always
located upstream from the response, starting close to the nozzle. Furthermore, when the amplitude of the forcing starts
to decrease, the amplitude of the streaks starts to grow, pointing to a sequence of events related to the formation of these
structures. Such sequence is similar to the lift-up effect in transitional boundary layers [15], which points out that a
similar mechanism is active in turbulent jets.

The overlapping region between forcing and response also provides a relevant information (which can be seen more
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clearly of the m = 10 case): streaks of positive (respectively negative) u component are always associated with positive
(respectively negative) radial forcing. This corroborates the hypothesis that these structures are related to the lift-up
effect, since positive streaks are regions where flow is transferred radially from high-speed regions (in this case, the core
of the jet) to low-speed regions, a phenomenon induced by the formation of streamwise vortices.

Figure 5 Streamwise component of the first resolvent response mode (left) and streamwise component of the
first SPOD mode (right) for several azimuthal wavenumbers and x/D = 1 (shown in colors). Radial and
azimuthal components of the respective forcing mode is also depicted with the response mode (arrows). The
dashed line indicates the position of the lipline.
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Figure 6 Streamwise component of the first resolvent response mode (left) and streamwise component of the
first SPOD mode (right) for several azimuthal wavenumbers and x/D = 4 (shown in colors). Radial and
azimuthal components of the respective forcing mode is also depicted with the response mode (arrows). The
dashed line indicates the position of the lipline.

The structure of the forcing and its relation to the response modes can be better understood by looking at axial
slices of the jet. Figure 5 shows the streamwise component of the response and SPOD modes for x/D = 1 and several
azimuthal wavenumbers, with the forcing at the given station depicted by the arrows. Looking at this specific axial
position, resolvent and SPOD modes have similar structures for all cases, with streamwise velocities peaking at positions
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close to the lipline. A possible reason for that is that, in the near-nozzle region, the lower characteristic scales of
turbulent structures are much smaller than the streak size, and thus the forcing may be approximated as spatially white,
leading to a good agreement between SPOD and response modes. Further downstream the increase of length scales
leads to a correlated forcing, and the agreement deteriorates. This effect can be seen in figure 6, which shows the same
quantities for x/D = 4. At this position, the agreement between SPOD and resolvent deteriorates, and the SPOD modes
start to have a higher radial support, while resolvent modes, although with some increase in the radial extent, are still
concentrated in regions close to the lipline.

The arrows in figures 5 and 6 represent the radial and azimuthal components of the forcing mode at each axial
station. These plots confirm the trend identified in figure 4: whenever a positive streak appear in the flow, it is related to
a forcing that tends to transfer flow from high to low speed regions. The novelty brought by this representation is the
direction in which this phenomenon occur. For all cases, the forcing seems to follow the swirl of the streaks, and is more
inclined in the azimuthal direction as m decreases. For m = 3, for instance, the forcing acts almost tangentially to the
lipline (represented by the dashed line), while it is almost radial at the streak positions for m = 10. Figures 5 and 6
also helps the understanding of how the direction of the radial velocity is related to streamwise vortices: two streaks
in opposite directions are related to perpendicular forcings, also opposed to each other, and these are linked by the
azimuthal component of f̂ in the inner and outer parts of the jet. The final picture shown in figure 6 for m = 10, for
instance, is of several vortices alternating with the streaks, with a center slightly away from the streak peak, with radial
support following the growth of the streaks.
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Figure 7 Contours of 30% of the maximum of the absolute value of streamwise and radial components of the
first response mode, and radial component of the first forcing mode for several azimuthal wavenumbers.

Even though the present analysis is in the frequency domain (focusing on low frequencies), the different positions of
the forcing and response in figure 4 also provide an indication of the dynamics beneath the formation of streaks. As
seen in [13], transient growth analysis of wall bounded flows show that the optimal initial disturbances that generate
streamwise streaks are streamwise vortices (for the unforced problem). As the disturbances evolve in time, these vortices
are slowly damped, while the streaks are formed and continuously reinforced. The final picture (at the time of maximal
growth) is a flow marked by the presence of high amplitude streaks, with some reminiscences of the vortices. Since we
are dealing with a spatially varying flow, we expect that a similar dynamics would occur here, but with the streamwise
coordinate as a surrogate for time. In figure 4, we can see a vortical forcing (represented by the radial component
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of the forcing) upstream and the generated streaks downstream. In figure 7, the absolute value of these quantities is
plotted with the response vortices (embodied by the radial component of the velocity v), where a contour of 30% of the
maximum is shown for each structure. For all values of m, the forcing is located virtually in the same position, close
to the nozzle. The main difference is on the position where the vortices and streaks are generated: for all cases, the
vortices experience a growth upstream of the appearance of streaks, with the difference between the starting point of both
structures increasing for higher azimuthal wavenumbers. Based on that, we propose the following sequence of events for
the generation of streaks in this turbulent jet: (1) the non-linearities from the turbulence in the near-nozzle region (which
come from a turbulent boundary layer) find a projection in the optimal forcing mode, triggering the mechanism; (2) this
forcing generates streamwise vortices in the flow in regions closer to the nozzle; and (3) these vortices progressively
generate the downstream streaks via the lift-up mechanism. We highlight that the described dynamics is supported by
the present results, but further studies on turbulent jets are needed to confirm this theory. Other tools, such as spatial
transient growth and adjoint based optimisation [16] can also be used to evaluate the validity of this mechanism.

IV. Conclusion
We have analysed resolvent computations for a turbulent jet at M = 0.4, comparing with results from spectral proper

orthogonal decomposition. The analysis was performed in the low frequency region (St = 0.05), where the lift-up
mechanism is known to be relevant. The results show that streaks are, indeed, present in the turbulent field of the jet,
and that they swirl for non-zero frequencies. A study of the spatial extent of the streaks was also performed using both
SPOD and resolvent analyses, leading to the conclusion that, as the azimuthal wavenumber increases, the spatial support
of the structures decreases, such that, for higher values of m, streaks are more concentrated around the lipline and closer
to the nozzle. Resolvent analysis also led to important conclusions about the optimal forcing that generate streaks in this
case: as usual in flows dominated by the lift-up effect, the optimal forcing takes the form of streamwise vortices. For
these swirling streaks, the vortices are also spining at the same rate, leading to slightly tilted structures for low azimuthal
wavenumber. Finally, the fact that the forcing is always located upstream of the streaks suggests a simple mechanism
for the generation of these based on transient-growth analysis, where vortices in the velocity field are excited by the
non-linearities of the flow, being amplified and, thus, generating streaks downstream.
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