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Linear resolvent analysis has demonstrated encouraging results for modeling coher-
ent structures in jets when compared against their data-deduced counterparts from high-
fidelity large-eddy simulations (LES). However, leveraging resolvent modes for reconstruct-
ing statistics of the far acoustic field remains elusive. In this study, we use a LES database
to produce an ensemble of realizations for the acoustic field that we project on to a limited
set of n resolvent modes. The projections are done on a restricted acoustic output domain,
r/D = [5, 6], and allow for the LES realizations to be recast in the resolvent basis via a data-
deduced, low-rank, n× n cross-spectral density matrix. We find substantial improvements
to the acoustic field reconstructions with the addition of a RANS-derived eddy-viscosity
model to the resolvent operator. The reconstructions quantitatively match the most en-
ergetic regions of the acoustic field across Strouhal numbers, St = [0 − 1], and azimuthal
wavenumbers, m = [0, 2], using only three resolvent modes. Finally, the characteristics of
the resulting n × n covariance matrices are examined and suggest off-diagonal terms may
be neglected for n ≤ 3. Results are presented for round, isothermal, Mach 1.5 and 0.9 jets.

I. Introduction

This manuscript aims to further work on the development of accurate, reduced-order models for turbulent
jet-noise prediction, control, and ultimately, reduction. Our goal is to develop a jet-noise model founded upon
the underlying physics of turbulent flows that is low-rank and that provides direct insight into the mechanisms
primarily responsible for noise generation. The resolvent analysis,1–4 also known as input-output analysis,
provides a useful framework for achieving these goals.

The central idea of using the resolvent framework for jet noise modeling is similar to the acoustic anal-
ogy,5,6 whereby a forcing term, related to the statistics of the hydrodynamic near-field turbulence, gives
rise, through a linear operator, to the observed far-field sound. The resolvent framework differs in two im-
portant ways. First, the operator is decomposed into its singular components that represent the maximal
amplification between the forcing and the output. This permits the resulting acoustic field to be described
at low rank, and thus limiting the forcing statistics that must be modeled. Secondly, the full linearized
Navier-Stokes equations are used as the propagator, and we seek a modal basis that represents both near
and far-field coherent structures.

Before recent advances in computational power, the idea of modeling both the hydrodynamic component
along with the acoustics would be seen as both unnecessary and computationally taxing. However, the
ability to resolve both components of the flow is in fact a benefit. Starting with the experimental findings of
Mollo-Christensen7 in 1967 and Crow & Champagne8 in 1971, it has become clear that coherent structures
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in the hydrodynamic near-field are directly responsible for far-field sound.9 These structures take the spatio-
temporal form of wavepackets and have been found to be the dominant source for aft angle sound,9 as well as
partial contributors to sideline noise.10,11 These wavepackets may be linked to the early works of Crighton
& Gaster12 in 1976 (and Michalke13 in 1971) who hypothesized that coherent structures could be described
as linear instability modes of the mean flow via modal analysis. However, it has now become apparent that
the correct representation of wavepackets is that of a highly-amplified response to turbulent fluctuations,
which is directly found via the resolvent framework.

Resolvent analysis uses the Singular Value Decomposition (SVD) to decompose the linear terms of the
resolvent operator, identifying sets of mutually orthogonal forcing/input and response/output modes, and
ranking them in terms of the corresponding energetic gain between the forcing and response. This is par-
ticularly important as it allows our model to select the most relevant amplification mechanisms for noise
generation. We can then retain a limited set of the resolvent modes to produce a reduced-order model, or
in other words, a reduced-rank acoustic analogy.

Several studies have applied resolvent analysis to develop low-rank jet models.3,14,15 The existence
of relatively low-rank responses in round, turbulent jets was shown by Schmidt et al.,4 with significant
agreement between structures found through spectral proper orthogonal decomposition16 (SPOD) of a high-
fidelity experimentally-verified large-eddy simulations (LES) of jets.17,18 Of particular relevance to this study,
are “acoustic resolvent modes” induced by performing resolvent analysis with an output domain defined over
a region where fluctuations are purely acoustic. Through implementation of an acoustic output domain,
resolvent analysis is able to filter out energetic, but acoustically irrelevant structures in the near-field. Jeun
et al.3 performed such an analysis and found that for a Mach 1.5 jet, at Strouhal number St = 0.33 and
azimuthal wavenumber m = 0, that the first resolvent mode reconstructs 57% of the acoustic energy, but
through inclusion of the next 23 resolvent modes the reconstruction improved to 70% of the acoustic energy.
This study looks to perform a similar analysis, in that we compute 20 acoustic resolvent modes and assess
how well they reconstruct the acoustic energy. However, we also look to generalize the performance of the
resolvent framework across frequencies St = 0 − 1, azimuthal wavenumbers m = [0 − 2], and for Mach 0.9
and 1.5 jets.

For a resolvent jet model to fully reconstruct flow statistics, and in this case those of the acoustic
field, a resolvent-based model must incorporate sub-optimal modes4 and correctly describe correlations (i.e.
covariance) between modes inherent to turbulent flow.19 The latter requirement can be shown via the
statistical representation of the resolvent operator16

Syy = RSffR
∗ (1)

where Syy and Sff are the cross-spectral density tensors of the responses and the forcing respectively and
R is the resolvent operator. This equation shows that if the forcing CSD, describing spatial correlations or
“color”20 can be modeled,21 then the resolvent operator identically reconstructs the flow statistics, Syy. If
the forcing were spatially uncorrelated, Sff = Λ, where Λ is a diagonal matrix, then the eigenvectors of Syy,
which are the SPOD modes of the outputs, are aligned with the eigenvectors ofRR∗,16 or the response modes
of the resolvent, R. Recent work incorporating classical eddy-viscosity models into the resolvent operator
showed a significant improvement in the alignment between SPOD and resolvent modes in jets,22 reducing
the resulting effort required to model the effective Sff by reducing the magnitude of the off-diagonal terms.
We utilize the same eddy-viscosity model in the present work.

This paper explores an approach to describe the coupling between resolvent modes that is necessary for
reconstructing the acoustic field with a minimal set of resolvent modes. The coupling presents a ‘jittering’
effect that provides directional and energetic variability in acoustic radiation inherently important for noise
prediction.23 Determination of the coupling between modes is performed by leveraging an ensemble of
LES realizations which are projected on to a limited set (i.e. low-rank) of acoustic resolvent modes. From
these projections we attain a (drastically) reduced-order cross-spectral density between the retained modes–a
Hermitian, frequency-dependent matrix of size n× n that accurately represents the acoustic field.

Organization of the manuscript is as follows. We first briefly describe the LES databases used, the main
details pertaining to resolvent analysis, and present the statistical description of the resolvent framework
for reconstructing the acoustic field and estimating the reduced order covariance matrix in § II. In § III we
present resolvent modes and LES reconstructions in the resolvent basis for one frequency-wavenumber pair
for the Mach 1.5 jet before generalizing the approach to both jets over St = [0, 1] and m = [0, 2]. In this
section we compare the impact of including a RANS eddy viscosity to the resolvent operator and find it

2 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 E

th
an

 P
ic

ke
ri

ng
 o

n 
Ja

nu
ar

y 
5,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

09
99

 



presents a significantly more efficient resolvent basis. We then conclude by investigating the structure of the
3-mode covariance matrix for m = 0 for the Mach 1.5 jet as a function of frequency and propose next steps
in model development.

II. Methods

A. Large Eddy Simulation database

The LES database and resolvent analysis are described in Schmidt et al. (2018)4 and Towne et al. (2018).16

For brevity, we summarize the main details here. The LES databases, transonic (Mach 0.9), and supersonic
(Mach 1.5) cases, were computed using the flow solver “Charles” and details on numerical methods, meshing,
and subgrid-models can be found in Brés et al. (2017, 2018)24,25 along with validation cases conducted at
PPRIME Institute, Poitiers, France for the Mach 0.9 jet.26 The Mach 1.5 round jet corresponds to a Reynolds
number Rej = ρjUjD/µj = 1.76 × 106 and for the Mach 0.9 jet Rej = 1.01 × 106, where subscript j gives
the value at the center of the jet, ρ is density, µ is viscosity, and Mj is the Mach number Mj = Uj/aj , with
aj as the speed of sound at the nozzle centerline.

Throughout the manuscript, variables are non-dimensionalized by the mean jet velocity Uj , jet diameter

D, and pressure ρjU
2
j , with the resulting equation of state p = ρT

γM2
j

, with T denoting temperature and γ the

ratio of specific heats. Frequencies are reported in Strouhal number, St = fD/Uj , where f is the frequency.
The database consists of 10,000 snapshots separated by ∆tc∞/D = 0.1 and 0.2 for Mj = 1.5 and Mj = 0.9
jets, respectively, with c∞ as the ambient speed of sound, and interpolated onto a structured cylindrical grid
x, r, θ ∈ [0, 30]× [0, 6]× [0, 2π], where x, r, θ are streamwise, radial, and azimuthal coordinates,respectively.
Variables are reported by the vector

q = [ρ, ux, ur, uθ, T ]T , (2)

where ux, ur, uθ are the three velocity components.
For an ensemble approach, the LES database of 10,000 snapshots is segmented into bins of 256 snapshots,

with an overlap of 75%, and under the implementation of a Hanning window, resulting in 153 independent
realizations of the flow. Each realization is then decomposed in the azimuthal direction and in time. The
temporal decomposition provides a resolution of St = 0.026 for the Mj = 1.5 jet and St = 0.0217 for
Mj = 0.9 and the azimuthal decomposition is valid up to m = 68, however, the acoustically relevant
azimuthal wavenumbers are much smaller and only azimuthal wavenumbers m = [0 − 2] are considered in
this paper.

B. Resolvent analysis

For the round, statistically-stationary, turbulent, jets considered in this manuscript, the compressible Navier-
Stokes, energy, and continuity equations are linearized via a standard Reynolds decomposition, and Fourier
transformed both in time and azimuthally to the compact expression

(iωI−Am)qm,ω = Lm,ωqm,ω = fm,ω, (3)

where Lm,ω is the forward linear operator, f constitutes the nonlinear forcing in each variable, ω is the
frequency, and m is the azimuthal wavenumber. For the purpose of suggesting resolvent analysis as a
predictive modeling tool, mean flow quantities used in the operator are derived from a RANS model, fitted
closely to the LES mean flow. Although the mean flows are similar, the computation of a RANS model, using
the standard κ− ε closure equations, also provides an eddy-viscosity field. With previous results of Pickering
et al. showing drastically improved agreement between SPOD and resolvent modes with the inclusion of an
eddy-viscosity model, we incorporate the eddy-viscosity field from the RANS as µT = cCµk

2/ε, where c and
Cµ are scaling constants (c = 0.2, Cµ = 0.0554 for Mj = 1.5 and Cµ = 0.0623 for the Mj = 0.9 jet), k is the
turbulent kinetic energy field, and ε is the turbulent dissipation field.

Rewriting equation 3 by moving Lm,ω to the right-hand side gives,

qm,ω = L−1
m,ωfm,ω. (4)

To specify particular domains for both the response and forcing we may write the above as

qm,ω = L−1
m,ωBfm,ω (5)

3 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 E

th
an

 P
ic

ke
ri

ng
 o

n 
Ja

nu
ar

y 
5,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

09
99

 



and define the output variable
ym,ω = Cqm,ω. (6)

Introducing the compressible energy norm,27

〈q1, q2〉E =

∫ ∫ ∫
q∗1diag

(
T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
q2rdxdrdθ = q∗1Wq2, (7)

(where superscript ∗ denotes the complex transpose) via the matrix W to the forcing and response (Wf =

Wy = W ) gives the weighted resolvent operator, R̂m,ω,

R̂m,ω = W 1/2
y CL−1

m,ωBW
−1/2
f . (8)

For the analysis of the acoustics, the output matrix C is chosen to only include pressure, p′ = ρ′T̄+ρ̄T ′

γM2
j

, from

x/D = [0, 30], and r/D = [5,20]. Ideally, the LES domain would extend from r/D = [5, 20] so that the LES
could be directly projected onto the resolvent basis, however, the LES database (i.e. the saved data from the
LES) only extends to r/D = 6. By truncating the resolvent output modes to r/D = [5, 6] (after computing
the resolvent SVD) and implementing a Moore-Penrose inverse a least square fit of the LES in the resolvent
basis can be performed. Additionally, the input matrix, B, is chosen to be identity for the most general
results, where other studies21 suggest the use of a filter based on the location and magnitude of turbulent
kinetic energy in the jet. Resolvent modes are then found by taking the singular value decomposition of the
weighted resolvent operator giving

R̂m,ω = Ûm,ωΣV̂ ∗m,ω (9)

where the optimal response and forcing modes are contained in the columns of Um,ω = W
−1/2
y Ûm,ω, with

Um,ω = [u1
m,ω,u

2
m,ω, ...,u

N
m,ω], Vm,ω = W

−1/2
f V̂m,ω, Vm,ω = [v1

m,ω,v
2
m,ω, ...,v

N
m,ω], and Σ = (σ1, σ2, ..., σN )

are the optimal gains.

C. Statistics

The statistics we are interested in are contained within the cross-spectral density (CSD) tensor, which may
be found for the desired output space by multiplying the resolvent equation by its complex conjugate and
taking the expectation16

〈yy∗〉 = 〈R̂ff∗R̂∗〉 (10)

giving
Syy = R̂SffR̂

∗ (11)

where Syy and Sff are the CSD tensors of the response and the forcing respectively.
As mentioned earlier, this representation shows that if the forcing CSD tensor is known, then the resolvent

operator reconstructs the response statistics. However, the forcing CSD is generally unknown. There are at
least two potential avenues for modeling this. The first is to directly model Sff . To aid in such modeling
efforts, Sff may be computed directly from full LES data, or estimated from limited flow statistics.19 A
second approach is to modify the resolvent operator by supplementing the governing linearized equations with
an appropriately linearized turbulence model. In Pickering et al.,22 an eddy-viscosity model was considered
and LES data was used to determine an optimal eddy viscosity field that would align, insofar as possible,
the modes of Syy with those of RR∗. This reduces the magnitude of the off-diagonal terms of Sff that must
be modeled. The results showed substantial reductions in these off-diagonal terms, in so far as the near-field
coherent structures were concerned.

In this study, we look further into estimating a low-order approximation of the forcing CSD, utilizing
the eddy-viscosity approximation of Pickering et al.22 but focusing now on the acoustic field. To do so, we
return to equation 11 and expand the resolvent operator through its singular value decomposition:

Syy = ÛΣV̂ ∗Sff V̂ ΣÛ∗ (12)

and define a covariance matrix, B, as B = ΣV ∗WfSffWfV Σ. This gives

Syy = ÛBÛ∗ (13)
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which can be rearranged to solve for the covariance matrix,

B = U∗WySyyWyU . (14)

In its current state, the covariance matrix is exact, maintaining a full size of the system and permitting
approximately 1011 degrees of freedom (i.e. B ∈ C5NxNr×5NxNr ).

To obtain a low-rank model B from the LES data, which extends only to r/D = 6, we must modify the
above relations. First, we reduce the output space to x/D = [0, 30] and r/D = [5,6] in the pressure field
and define the associated output matrix as Cz where z denotes the new restricted space. Applying Cz to
both the LES data and resolvent modes gives the ensemble of realizations z and resolvent modes Uz. In
addition to reducing the domain space, we also truncate the resolvent response basis to a limited set of n
modes, represented as Ũz. An important consequence of reducing the resolvent domain from Cy to Cz is a
loss of orthogonality. Fortunately, we may still determine a least squares fit of the data by computing the

Moore-Penrose inverse of W
1/2
z Ũz, (W

1/2
z Ũz)

+ = (Ũ∗zWzŨz)
−1Ũ∗zW

1/2
z , and projecting onto the CSD of

z to estimate
B̃ = (W 1/2

z Ũz)
+∗W 1/2

z SzzW
1/2
z (W 1/2

z Ũz)
+, (15)

where (W
1/2
z Ũz)

+ ∈ CNz×n and the covariance matrix then reduces to size n × n, (i.e. degrees of freedom
are 101). With B̃, we may ask the following questions: (1) How well does B̃ reconstruct Szz in the truncated
resolvent basis? (2) Can B̃ reconstruct a more general space (e.g. C = I)? (3) How does a reduced
knowledge of Szz affect the estimation of B̃ (and its implications to the prior two questions)? (4) May B̃ be
further reduced (e.g. neglect off-diagonal terms)? (5) Can B̃ be modeled?

To address the first question, how well does B̃ reconstruct Szz, the estimated response CSD is computed
by

S̃zz = ŨzB̃Ũ∗z . (16)

We can then determine the accuracy of the reconstructions by comparing the difference of root mean square
(RMS) values in terms of decibels:

∆dB = 20log

(√
1

k − 1
diag(S̃zz − Szz)2

)
, (17)

where k is the number of realizations. Alternatively, an energy norm of the error could be taken, however,
analyzing an energy norm when considering acoustics may be misleading due to the range of magnitude in
the far-field.

To assess how well a more general space may be reconstructed with B̃ we use the original forcing modes
computed from the resolvent and recalculate the responses with the response restriction matrix set to identity.
This is computed as

Ũq = L−1Ṽy (18)

where Uq is the set of response modes of the full domain from the set of forcing modes Vy of the Cy restricted
domain. We can then estimate the full state CSD,

Ŝqq = ŨqB̃Ũ∗q . (19)

Considering flow statistics may be sparse or limited in practical applications, a natural question arises in
whether a reduced Szz can lead to a similar B̃ found from the full Szz or, at the least, a useful B̃ for then
predicting quantities of Szz. We now define a reduced response CSD S̆zz, as the diagonal of the response
CSD, or the power spectral density (PSD), and a partially-informed B̃ given by

B̃ = (W 1/2
z Ũz)

+∗W 1/2
z S̆zzW

1/2
z (W 1/2

z Ũz)
+.. (20)

The estimation is then again
S̃zz = ŨzB̃Ũ∗z . (21)

Similarly, estimation of a more general state with reduced statistics can also be performed.
Finally, the structure of the reduced-order covariance matrix B̃ is examined to determine the feasibility

of modeling such a matrix. We may first assess how well the truncated resolvent basis directly captures
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Figure 1. The first three resolvent modes of fluctuating pressure, qp′ . Red and blue contours vary from ± 50%
of the maximum fluctuating pressure of each mode, ±0.5||qp′ ||∞. Mj = 1.5, St = 0.26, m = 0.

the off-diagonal information of Szz by examining whether B̃ is diagonally dominant. To make a qualitative
assessment of the diagonal dominance we normalize B̃ by its diagonal components

B̃norm = diag(B̃)−1/2B̃diag(B̃)−1/2, (22)

such that the magnitude of all entries range from 0-1 and the diagonal reads unity, therefore, providing a
relative measure of the importance of each diagonal from 0-1. In the case where B̃norm = I, the truncated-
resolvent model would present a basis that inherently captures the off-diagonal information of Szz and
eliminates the need for further ‘coloring’ of the resolvent modes to reconstruct S̃zz .

However, modeling modes which perfectly capture the coloring of turbulent flows is difficult. As such,
we look closer at the inherent terms of B̃

B̃ = Σ̃zṼ
∗WfSffWf Ṽ Σ̃z (23)

we see that Σ̃z, the corrected resolvent gain from altering the domain to Cz found by

Σ̃z = Σ̃y
Ũ∗zWzŨz

Ũ∗yWyŨy
, (24)

is directly determined by the resolvent, leaving only Ṽ ∗WfSffWf Ṽ to be modeled. These set of terms may

also be viewed as Ṽ ∗WfSffWf Ṽ = (Ṽ ∗Wff)(f∗Wf Ṽ ) where β = Ṽ ∗Wff represents the projection
of the LES forcing onto the resolvent forcing basis, giving the effective magnitude, and relative phase, of
each resolvent forcing mode for proper reconstruction of the flow. Therefore, we chose to investigate the
magnitude and phase components of the complex covariance matrix B̃ for informing a future noise model.

III. Results

A. Resolvent analysis and LES reconstructions

We begin by providing detailed results for a single frequency and azimuthal wavenumber pair of the Mj = 1.5
jet using the RANS eddy-viscosity resolvent operator. Figure 1 presents the first three resolvent modes
computed with a restricted acoustic output domain (r/D = [5, 20] in the fluctuating pressure field) and
recast in the full domain by Uq = L−1Vy for Mj = 1.5, St = 0.26, and m = 0. The associated gain of these
modes, normalized by the first resolvent gain are [1, 0.17, 0.15] (and slowly decreasing with higher modes),
indicating the first resolvent mode has at least six times the amplification to its associated forcing than the
following resolvent modes.

The resolvent response modes show a particular pattern of acoustic beams. For the first mode there is a
single, energetic acoustic beam, propagating at a shallow angle to the jet axis. The first sub-optimal mode
consists of two acoustic beams, similar to what was found by Jeun et al.3 This pattern continues to the next
sub-optimal mode, with three beams located at the perimeter of the first sub-optimal. Although not shown,
this behavior continues for further sub-optimal modes.

The resolvent response modes can now be used to determine the covariance matrix B̃. However, before
directly computing B̃, we first provide an example of individual reconstructions of the LES realizations. To
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Figure 2. Three realizations of the LES pressure
field at Mj = 1.5, St = 0.26, m = 0. Red and blue
contours vary from ± 50% of the maximum fluc-
tuating pressure of each mode, ±0.5||qp′ ||∞.

Figure 3. Reconstructions of the corresponding
LES realizations using the 3-mode resolvent basis.
Contour values are identical to figure 2. Mj = 1.5,
St = 0.26, m = 0.

Figure 4. Comparison of pressure RMS values by dB at r/D = 6 for the LES ensemble and reconstructions in
the resolvent basis using 3, 5, and 10 resolvent modes.

do this we return to the equation
B̃ = Ũ+∗

z WzSzzWzŨ
+
z . (25)

and expanding Szz to zz∗ shows that B̃ is the covariance of the ensemble of projection coefficients, α =
Ũ+∗
z Wzz of the LES data in the resolvent basis. Figure 2 and 3 provide three independent LES realizations

and their reconstructions (using Ũq) in a 3-mode truncated resolvent basis.
While the resolvent gain is only optimal over the region r/D = [5 − 20], the three resolvent modes are

able to accurately reconstruct the different radiation patterns evident in the realizations. Clearly there is
constructive and destructive reinforcement amongst the three resolvent modes in order to produce the LES
realizations.

To quantitatively assess how well the resolvent basis reconstructs the LES realizations, we compute and
compare the RMS pressure values by dB at r/D = 6 in figure 4, again for St = 0.26, m = 0 over all k = 153
realizations. In addition to the 3 resolvent mode basis, results are also shown for 5 and 10 mode bases.
With just three modes we see that the peak in directivity is well captured, with minor improvements (and
diminishing returns) in the off-peak directivity with increasing numbers of modes.
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Figure 5. RMS of LES pressure fluctuations of the Mj = 1.5 jet at radial surface r/D = 6 from St = [0, 1] and
x/D = [0, 30] for three azimuthal wavenumbers, m = [0, 2].

Figure 6. RMS of resolvent reconstructions of the Mj = 1.5 jet, without an eddy-viscosity model (left) and
with a RANS eddy-viscosity model (right), at radial surface r/D = 6 from St = [0, 1] and x/D = [0, 30] for three
azimuthal wavenumbers, m = [0, 2], from left to right and using n = 1, 3, 5, 10, 20 modes from top to bottom.
Contours and axes mirror those of figure 5.

B. Eddy viscosity model

We now expand our analysis to Strouhal numbers ranging from 0 to 1 and azimuthal wavenumbers 0-2
and assess the overall ability of the truncated resolvent basis to reconstruct the acoustic field, as well as
determine the utility of implementing an eddy-viscosity model for noise modeling. We continue comparisons
of the LES data and resolvent reconstructions by RMS pressure fluctuations at r/D = 6, which are now
plotted over a range of frequencies (St = [0, 1]) and azimuthal modes (m = [0− 2]) in figure 5. In figure 6,
the resolvent-basis reconstructions of the pressure fluctuations are shown for bases of size 1, 3, 5, 10, and 20.
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Figure 7. RMS of LES pressure fluctuations of the Mj = 0.9 jet at radial surface r/D = 6 from St = [0, 1] and
x/D = [0, 30] for three azimuthal wavenumbers, m = [0, 2].

Figure 8. RMS of resolvent reconstructions of the Mj = 0.9 jet, without an eddy-viscosity model (left) and
with a RANS eddy-viscosity model (right), at radial surface r/D = 6 from St = [0, 1] and x/D = [0, 30] for three
azimuthal wavenumbers, m = [0, 2], from left to right and using n = 1, 3, 5, 10, 20 modes from top to bottom.
Contours and axes mirror those of figure 7.

The left and right columns show resolvent bases without and with the eddy viscosity model, respectively.
For the computations without eddy viscosity, a constant turbulent Reynolds number (ReT = 3 × 104) is
used.

A visual comparison between these columns, as well as figure 9 presented later, shows the clear advan-
tage that the eddy-viscosity model provides, especially when two or more resolvent modes are retained.
Interestingly, the rank-1 model appears to be quite similar both with and without eddy viscosity, which is
likely due to the Kelvin-Helmholtz mechanism that dominates (i.e. as the leading resolvent mode) much of
the frequency-wavenumber space considered,28 and which is less sensitive to the eddy-viscosity model than
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Mj = 1.5

Figure 9. Difference in decibels, dB, between the RMS
values of LES and the eddy-viscosity resolvent recon-
structions for the Mj = 1.5 jet. Axes mirror those of
figure 5 with contours set at ±5 dB.

Mj = 0.9

Figure 10. Difference in decibels, dB, between the
RMS values of LES and the eddy-viscosity resolvent
reconstructions for the Mj = 0.9 jet. Axes mirror those
of figure 7 with contours set at ±5 dB.

the sub-optimal modes.22 The rank-1 results are also similar to those of Sinha et al.29 who computed a
rank-1 model via the parabolized stability equations and projected onto the first SPOD-mode at each St−m
pair. However, we show here that once additional modes are included the reconstructions are substantially
improved and the eddy-viscosity model shows superior performance; the 20-mode, eddy-viscosity model is
indistinguishable from the LES for all frequencies and azimuthal modes, while even the 3-modes model is
quantitatively accurate for m = 0 and m = 1.

In figures 7 and 8, we plot the LES and reconstructed pressure fluctuations, respectively, for the Mj = 0.9
jet. We see many similar behaviors to the Mj = 1.5 case, most notably the superiority of the eddy-viscosity
resolvent modes, which achieve nearly complete reconstruction of the full LES pressure with just 20 modes.
However, it is also apparent that a larger number of modes is required to accurately reconstruct the modes
compared to theMj = 1.5 case. For example, about 10 modes are required to obtain a reasonable quantitative
match (compared to just 3 modes at Mj = 1.5).

In order to get a clearer view of the accuracy of the reconstructions, we plot in figures 9 and 10 the
difference between the LES and reconstructed pressure fields in dB for both Mj = 1.5 and Mj = 0.9,
but concentrating now just on the model with eddy viscosity. Generally, more modes are required for low
frequencies, particularly for the axisymmetric mode, and higher azimuthal modes over all frequencies. This
is generally consistent with the lack of clear low-rank (Kelvin-Helmholtz) response at those conditions.4

Likewise, the region x/D = [0− 10] is consistently underpredicted at all frequencies by the resolvent basis.
At r/D = 6, this region generally consists of sideline noise which is more than 20dB lower than the peak
noise and it is unsurprising that low-rank models based on maximizing the response over 0 < x/D < 30
would underpredict regions that are significantly less energetic.
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Figure 11. RMS of resolvent reconstructions for the
Mj = 1.5 jet using only the PSD of the CSD matrix,
Szz, with a RANS eddy-viscosity model, at radial sur-
face r/D = 6 from St = [0, 1] and x/D = [0, 30] for three
azimuthal wavenumbers, m = [0, 2], from top to bot-
tom and using n = 1, 3, 5, 10, 20 modes from left to right.
Axes mirror those of figure 5, while the contours are
reduced by a factor of 17.8 (i.e. 25dB).

Figure 12. RMS of resolvent reconstructions for the
Mj = 1.5 jet using only the diagonal components of B̃
matrix, with a RANS eddy-viscosity model, at radial
surface r/D = 6 from St = [0, 1] and x/D = [0, 30] for
three azimuthal wavenumbers, m = [0, 2], from top to
bottom and using n = 1, 3, 5, 10, 20 modes from left to
right. Axes and contours mirror those of figure 5.

C. Modeling with uncorrelated data

We may inquire whether the off-diagonal components of the original CSD are important to the estimated B̃
and the resulting reconstruction of the RMS pressure fluctuations. Figure 11 shows results for the Mj = 1.5
case when only retaining the diagonal components of Szz. While the results show qualitatively similar
directivity, the resulting magnitude is vastly underpredicted by the reconstructions (note that the contours
have been shifted by 25dB from the previous figures). These results seem to confirm the importance of
“jitter”.23,30 Only by providing information about the coherence of the data (i.e. off-diagonals of the CSD)
can the model determine the correlations, in phase and amplitude, between resolvent modes (for example
the one, two, and three-beam), such that through constructive interference, produce the observed radiation.

Alternatively, rather than training B̃ with only the PSD of the data, we may estimate B̃ using the full
CSD and then assess the importance of the off-diagonal components of B̃ by only utilizing the diagonal
components to reconstruct the LES statistics. Using only the diagonal components of the estimated CSD
provides the reconstructions in figure 12, now using the same contours as those of figure 5. For a limited set
of modes, such as n = 3, the reconstructions perform rather well, only slightly underpredicting the overall
magnitude of the RMS values. However, the addition of more modes, n > 5, leads to significant errors at
low frequencies. The deteriorating reconstruction as n increases is a result of the diagonal dominance of B̃.
If B̃ is diagonally dominant, then the diagonal reconstruction is valid, if not, then the correlations between
modes are crucial for recovering the reconstruction. We investigate this hypothesis in the next section by
examining the structure of B̃.
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Figure 13. Normalized magnitude of the estimated forcing CSD, B̃norm = diag(B̃)−1/2B̃diag(B̃)−1/2.

D. Frequency characteristics of the CSD

Finally, we investigate characteristics of the estimated CSD matrix (B̃), using the full CSD data and eddy-
viscosity model basis, in the hope of identifying trends which may be generalized for a noise model. First,
we assess the dominance of the diagonal components in B̃ through normalizing the matrix by its diagonal
components such that the magnitude of all components lie between 0-1 and all diagonal terms read unity,
B̃norm = diag(B̃)−1/2B̃diag(B̃)−1/2. Figure 13 provides the normalized B̃ for St = [0.23, 0.55, 0.86] at
m = 0 showing that the diagonal assumption is particularly poor at lower frequencies, but relatively valid
at moderate and high frequencies, explaining the inferior performance at low frequencies in figure 12. The
lack of diagonal dominance at low-frequencies is likely the result of the comparison domain chosen, r/D =
[5− 6], as near-field behavior extends into this domain has been found to be of significantly higher rank.4,31

Additionally, the diagonal dominance is relative to the number of modes present in the truncated basis. If
only n = 3 modes are kept the diagonal assumption is valid for all frequencies, presenting the rather accurate
results of row two in 12. This last observation is crucial as we seek a lowest rank model, therefore the use of
only n = 3 modes is preferential for a reduced order model.

Further, the diagonally dominant structure of B̃ for many of the St −m pairs provides a sense of the
optimality of the current resolvent basis. Even though the off-diagonal components of Szz are necessary
for capturing the effect of jitter, the resulting B̃ off-diagonals may be neglected due to the ability of the
resolvent basis to directly capture the statistics of the acoustic field. In other words, the off-diagonal terms
of Szz are directly projected onto the diagonals of B̃. This is due to the resolvent basis inherently possessing
characteristics of jitter (i.e. variability in beam location and directivity23), as the basis provides multiple
acoustic beams which vary in axial extent of beams, directivity, and phase.

For the remainder of this section we limit the analysis to the axisymmetric mode, m = 0, and use the
rank-3 model, a 3 × 3 complex-valued B̃. As B̃ is Hermitian, there are 3 real components (the diagonals)
and 3 unique, complex off-diagonal components, for a total of 9 values (for each frequency, wavenumber,

and Mach number). We transform the matrix into magnitude and phase, |B̃i,j |e
iθB̃i.j , requiring a fit to 6

magnitudes and 3 angles for each frequency and Mach number combination.
In this transformation the magnitude of each matrix not only provides the overall intensity of occurrence

of each resolvent mode, but also provides information on the strength of coupling between occurrences of
one resolvent mode to another. The overall magnitude of B̃ is shown in figure 14 across St = [0, 1] for the six
unique magnitude entries. An interesting observation is that from these 6 entries, they tend to cluster about
three curves, B̃1,1 sits alone, while B̃2,1 and B̃2,2 , and B̃3,1, B̃3,2, B̃3,3 cluster near each other respectively.
Further, the general trends of these curves reflect energy curves computed through SPOD (details on SPOD
can be found in16) using the same output domain, r/D = [5, 6] and x/D = [0, 30] of the fluctuating pressure,
shown in figure 15. This comparison indicates that the covariance matrix seeks to redefine the resolvent
basis into a new, more efficient basis similar to that of SPOD, the optimal basis for describing turbulent
statistics.16

Returning to the definition of B̃, B̃ = ΣzṼ
∗WfSffWf Ṽ Σz, we can see that our current formulation

includes the gains of the resolvent analysis, which may be accounted for directly. The gains of the first
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Figure 14. Magnitudes of the
six unique entries of the 3 × 3
covariance matrix for azimuthal
wavenumber, m = 0.

Figure 15. Three largest eigen-
values of the SPOD spectrum
computed over the LES acous-
tic domain, Cz for azimuthal
wavenumber m = 0.

Figure 16. Resolvent gains for
the first three modes across St =
[0, 1] for azimuthal wavenumber
m = 0.

Figure 17. Magnitude of the
forcing projection coefficients,
βkβ

∗
k = Ṽ ∗Wffkf

∗
kWf Ṽ . The

dashed line gives ∼ St−3.

Figure 18. Phases of the three covariance matrix angles as a function of frequency.

3 resolvent modes are plotted in figure 16, with significant separation of the leading mode followed by
two modes of similar gain. At first glance the gains do not appear to be entirely useful for removing any
dependence of frequency on the magnitude of B̃, however, removing the gains from the matrix, Σ−1

z B̃Σ−1
z =
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Ṽ ∗WfSffWf Ṽ gives figure 17. Here all of the entries have been transformed into curves of order −3 (the

dashed line) with varying magnitudes, suggesting each entry may be modeled as, B̃i,j(St) ≈ ci,jSt−3, where
ci,j represents a scalar amplitude. Although not presented here, similar trends (i.e. ∼ St−3) are observed for
azimuthal wavenumbers 1 and 2, as well as for the Mj = 0.9 jet. Figure 17 presents the mean of the ensemble

of forcing projection coefficients, βk = Ṽ ∗Wffk, directly describing the intensity of each resolvent forcing
mode found in the LES data. Interestingly, despite the first resolvent mode having the greatest amplification,
the magnitude of the projection of the forcing into Ṽ is not as large, by many orders of magnitude, when
compared to the magnitude of sub-optimal resolvent forcings.

Attention is now turned to the 3 phases of the covariance matrix with all three angles plotting in figure 18.
It is difficult to suggest a general function to represent the phases. The phase curves, and to a similar degree
the magnitude curves, seem to reflect the differences in dominant mechanisms with respect to frequency at
m = 0. Although there are no consistent patterns among the phases at low frequencies, St < 0.25, the phases
do follow a linear trend from St = 0.3− 0.6 and a second, but different, linear trend from St = 0.6− 1.

IV. Summary and Outlook

We leveraged the availability of a LES database to examine resolvent-mode-based reconstructions of the
acoustic field of round, turbulent Mj = 1.5 and Mj = 0.9 jets. We represent the forcing cross-spectral
density matrix with a truncated set of resolvent modes and approximate the amplitudes of the modes with
best-fit expansion coefficients of realizations from the observed LES acoustic field. We find that relatively
low-rank models consisting of as few as 3 resolvent modes can accurately reconstruct the acoustic field for
the first two azimuthal modes for a Mj = 1.5 jet, where as about 10 modes were required for the higher
azimuthal mode (m = 2) and 10-20 modes were required for the Mj = 0.9 jet. Based on the relative increase
in radiation efficiency of the (low-rank) Kelvin-Helmholtz response of the jet, it is perhaps not surprising
that the higher Mach number case can be captured at lower rank. In both cases, the use of an eddy-viscosity
model in the resolvent formulation led to (vastly) superior results compared to a fixed Reynolds number.
The results show that neglecting the off-diagonal components of the data CSD results in an underprediction
by about 25dB, consistent with previous results using on linear models30,32 and demonstrated importance
of “jitter” in wavepacket source models.23 However, neglecting the off-diagonal components of the estimated
CSD instead, constructed via the resolvent basis, gave rather accurate reconstructions for n = 3 and show
that the resolvent basis is able to directly model correlations in the acoustic field.

Examination of the structure of the reduced-order covariance matrix showed dominance along the diag-
onal, explaining the success of reconstructions based solely upon the diagonal, and also provided signs of
smooth, and generally simple, relations in terms of frequency dependence among all matrix components.
Further work into the characteristics of reduced covariance matrices at other azimuthal wavenumbers and
Mach numbers may produce general trends which may be leveraged for a jet-noise model. However, as n
increases, the parameter space which must be modeled increases by n2. As such, this path forward for a
transonic jet, where the inclusion of 20 modes is likely necessary for accurate predictions, may prove difficult
unless additional assumptions, such as modeling only the diagonal term of B̃, reducing the complexity to n,
are taken.

Regardless of this difficulty, the ability of the resolvent basis to describe much of the acoustic field with
20 modes or less across multiple Mach numbers, a large range of frequencies, and the acoustically dominant
azimuthal wavenumbers is promising. This indicates that the resolvent framework already contains the
appropriate acoustic functions to describe jet noise, the next step must then be to generalize their correlations
amongst each other such that they represent the effect of turbulence on noise generation.
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