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ABSTRACT

Optimal control of turbulent flows requires a detailed prediction of the unsteady,
three-dimensional turbulent structures that govern quantities of interest like noise,
drag, and mixing efficiency. There is a need for physics-based, reduced-order
models of turbulent structure for those cases where direct simulation of the flow
would be computationally prohibitive. In this thesis, we explore resolvent analysis
as a framework for such models. Based on a linearization about the turbulent mean
flow field, the resolvent finds optimal (highest gain) forcing functions that give
rise, through linear amplification mechanisms, to energetic coherent structures. The
forcing functions represent the nonlinear interactions between the coherent structures
as well as with background incoherent turbulence. While the high-gain structures
capture many characteristics of the observed turbulent coherent structures in both
wall-bounded and free-shear flows, closures for the forcing function are required to
make these models predictive and thus utilize them for flow control.

In the first part of this thesis, we examine a linear model for the resolvent forcing
by adapting the concept of a turbulent (eddy) viscosity from classical Reynolds-
Averaged Navier–Stokes (RANS) turbulence modeling. We present a data-driven
approach to identify an optimal eddy-viscosity field that best matches the resol-
vent prediction to the most energetic coherent structure educed via spectral proper
orthogonal decomposition (SPOD) of data from high-fidelity simulations. We an-
alyze the specific case of turbulent jets spanning a range of Mach numbers from
subsonic to supersonic. We find the optimal eddy-viscosity field to be effective at
matching both the shape and energy distribution of structures. More importantly,
we find that calibrated eddy-viscosity fields predicted using standard eddy-viscosity
models (utilizing only quantities available from RANS) yield results that are close
to optimal.

We use the resulting resolvent model together with the high-fidelity data to investi-
gate the full spectrum of amplification mechanisms and coherent structures present
in turbulent jets. The addition of a turbulence model provides a clear separation be-
tween two established mechanisms in turbulent jets (Kelvin-Helmholtz and Orr) and
leads to the identification of a third mechanism known as lift-up. Lift-up becomes
the dominant mechanism at low-frequency limits for nonzero azimuthal wavenum-
bers, generating elongated, streaky structures. We find these streaks to be the most
energetic structures in the jet, and that their presence has implications for altering
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the mean flow and controlling noise.

Finally, we extend resolvent analysis to that of an acoustic analogy that relates the
near-field forcing to the far-field acoustics 100 diameters from the nozzle. We again
leverage high-fidelity data to produce an ensemble of realizations of the acoustic
field and find that only a few resolvent modes are necessary for reconstruction.
Ultimately, we find that a resolvent model based solely upon RANS quantities can
reconstruct and predict the peak acoustic field at rank-1 to within 2 decibels for both
the supersonic and transonic jets.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Optimal control of turbulent flows, from airfoils to wind-turbines to jet engines,
remains a challenging and exciting area of research in fluid mechanics. Due to the
complex and chaotic nature of turbulent flow, there exists no unique or repeatable
time history for any general turbulent flow configuration (Karman, 1938; Hinze,
1959). Even so, the sensitivity of the equations to any external perturbations would
render such an undertaking as moot (Bradshaw, 1972; Pope, 2001). This chaotic
and, in many ways, unpredictable quality of turbulence presents a unique challenge
for understanding and controlling the fundamental mechanisms of turbulence.

With recent advancements in computational power, time-averaged statistics of turbu-
lent flows found via Reynolds-Averaged Navier–Stokes (RANS) simulations (Laun-
der and Spalding, 1983), direct numerical simulation (DNS) (Moin and Mahesh,
1998), or large eddy simulation (LES) (Lesieur and Metais, 1996) have been found
to provide data that agree with experiments of various flow configurations (e.g.
jets, boundary layers). These are critical tools for furthering turbulence research,
however, with each technique comes different limitations. RANS, the cheapest
of the above, lacks universality and requires significant tuning for each new flow
condition. DNS, while tremendously accurate, is prohibitively costly as it requires
resolving scales of the flow down to the Kolmogorov length scale, and is intractable
for nearly all complex or high-Reynolds number flows. LES presents a “compro-
mise” as a much cheaper alternative to DNS and has emerged as an accurate tool
for simulating turbulent flows and their associated noise for geometries relevant to
full-scale aircraft (Brès and Lele, 2019). Yet, LES remains relatively expensive and,
for engineers seeking control strategies, computing full parameter searches is not
feasible. Further, even though simulations provide an immense amount of data, they
are agnostic to the fundamental mechanisms active in the flow and thus lack a direct
entry point for modifying the flow to alter engineering quantities of interest.

Although the chaotic nature of turbulence and the intractability of many computa-
tional tools would seem to spoil any hope for progress, reframing turbulence from a
time-dependent quantity to a statistical one reveals that a great deal of order under-
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pins turbulence. The “order” of turbulence that we are interested in characterizing in
this thesis are known as coherent structures, meaning structures found to be present
in turbulent flow for relatively long periods of time. These structures are of critical
importance as they are a primary contributor to the transport of mass, momentum,
and energy, and the radiation of acoustic waves in turbulence (Lumley, 1981). Some
of the earliest observations of order among the fluctuating terms in turbulence are
those of Mollo-Christensen (1967) and Crow and Champagne (1971), who found
orderly structure in turbulent jets, and Brown and Roshko (1974) in planar mixing
layers. Nearly 50 years later, a full understanding of the underlying mechanisms
driving the generation and sustenance of coherent structures remains elusive, yet
their connection to longstanding engineering problems such as jet acoustics (Jordan
and Colonius, 2013) and drag in wall-bounded flows (Moarref and Jovanović, 2012;
Jiménez, 2018; Toedtli, Luhar, and McKeon, 2019) has become increasingly appar-
ent. Thus, there remains a clear need for reduced-order frameworks for modeling
coherent structures and accurately predicting their associated statistics.

One attractive reduced-order framework is through an interpretation of turbulent
flow via resolvent analysis. Proposed by McKeon and Sharma (2010), coher-
ent structures are described as statistical features of turbulence, where nonlinear
interactions are regarded as forcing terms to a linearized operator that amplifies
them according to the turbulent mean flow. As a statistical approach to coherent
structures in turbulence, the resolvent analysis is ideally suited for formulating data-
driven approaches. Specifically, a data-eduction technique known as spectral proper
orthogonal decomposition (SPOD), provides the observed analogue of resolvent
analysis (Towne, Schmidt, and Colonius, 2018). In this thesis, we aim to couple
these analyses by informing our approach to resolvent analysis with data educed via
SPOD of high-fidelity data.

1.2 Resolvent analysis
Resolvent analysis (also called input/output analysis and frequency response anal-
ysis) has its roots in linear systems and control theory. The resolvent operator is
derived from the linearized flow equations and constitutes a transfer function be-
tween inputs and outputs of interest. It has been used to study the linear response of
flows to external body forces and perturbations (Trefethen et al., 1993; Farrell and
Ioannou, 2001; Schmid, Henningson, and Jankowski, 2002; Jovanović and Bamieh,
2005; Bagheri et al., 2009; Sipp, Marquet, et al., 2010) and to forcing from the non-
linear terms in the Navier–Stokes equations (McKeon and Sharma, 2010; Sharma
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and McKeon, 2013).

It is in the latter context of McKeon and Sharma (2010) that we focus our ap-
proach to resolvent analysis. The method can be derived by the partitioning of the
Navier–Stokes equations into terms that are linear and nonlinear with respect to
perturbations to the turbulent mean flow. This interpretation then relies on a sin-
gular value decomposition of the linearized compressible Navier–Stokes equations
that identifies and ranks the optimal (highest gain) forcing functions that give rise,
through linear amplification mechanisms, to energetic coherent structures in the
near-field turbulence and far-field sound.

The most compelling quality of this approach for reduced-order modeling lies in the
ranking of structures by their energetic gain, as it self-selects the most important
coherent structures of the flow. Thus, the resolvent approach provides an attractive
basis for reduced-order models as it naturally permits the use of a truncated set
of the highest-gain modes as a basis for the output. Such an approach has led to
several insights to fundamental mechanisms in turbulent flow (Jovanović, 2021),
from canonical wall-bounded flows (Hwang and Cossu, 2010a; Hwang and Cossu,
2010b; McKeon and Sharma, 2010; Sharma and McKeon, 2013; Moarref, Sharma,
et al., 2013) to free shear flows (Jeun, Nichols, and Jovanović, 2016; Schmidt et al.,
2018).

However, closures for the forcing functions are necessary to make these models
predictive. Recently, there have been a number of approaches coupling resolvent
analysis with exact solutions to the Navier–Stokes equations or to observed data
as discussed by McKeon (2017). In the former case, Sharma, Moarref, et al.
(2016) showed that not only could exact invariant solutions of the Navier–Stokes
equations for both pipe and channel flows be described through a truncated resolvent
approximation, but they could also describe the nonlinear forcing at low rank.
Building on this work, Rosenberg andMcKeon (2019) closed the nonlinear terms by
coupling resolvent analysis with a self-interaction feedback that iteratively produced
a nearly neutrally stable and self-sustaining mean flow. Data-informed approaches
are also of interest for estimating the nonlinear forcing and have come largely through
designing optimizations that recovermean-flow statistics, as has been done by several
authors (Moarref and Jovanović, 2012; Mantič-Lugo, Arratia, and Gallaire, 2014;
Yim,Meliga, andGallaire, 2019; Hwang andEckhardt, 2020), or through knowledge
of partial second-order statistics of the flow (Zare, Jovanović, and Georgiou, 2017;
Illingworth, Monty, and Marusic, 2018; Towne, Lozano-Durán, and Yang, 2020).
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A third approach for closure, which we study in detail in Chapter 2, is to adapt the
concept of a turbulent (eddy) viscosity from classical Reynolds-Averaged Navier–
Stokes (RANS) turbulence modeling. Motivation for augmenting our analysis with
an eddy-viscositymodel may be tied to concepts underlying the triple decomposition
(Reynolds and Tiederman, 1967; Reynolds and Hussain, 1972), which identifies the
Reynolds stresses as acting on the coherent fluctuations (from both the coherent and
incoherent fluctuations). This approach is not novel, as many studies have applied
eddy-viscosity models in the wall-bounded turbulence literature (Del Alamo and
Jimenez, 2006; Cossu, Pujals, and Depardon, 2009; Pujals et al., 2009; Hwang and
Cossu, 2010a), however, a quantitative assessment (with the exception of Morra
et al. (2019)) of their effect on turbulent structures is lacking. Fortunately, recent
connections between resolvent and SPOD provide the ideal measurement tool for
investigating the potential for resolvent closures via eddy-viscosity models.

1.3 Turbulent jets and aeroacoustics
To present our approach for turbulence modeling, we investigate round, high-
Reynolds number turbulent jets, a canonical free-shear flow configuration, at sub-
sonic, transonic, and supersonic conditions. We develop our models with both
the near hydrodynamic field and the far acoustic field. The latter is of particular
importance to the jet community as jet noise is both a major community health
hazard, with several non-auditory health effects (Stansfeld and Matheson, 2003),
and a substantial issue for military personnel, as approximately $1 billion are spent
per year by the U.S. Department of Veterans Affairs on hearing loss (Committee
et al., 2009; Yankaskas, 2013).

The interpretation and modeling of coherent structures in turbulence have histori-
cally taken the formof instabilities of (typically steady) basic flows. In jet turbulence,
Crighton and Gaster (1976) hypothesized that one could describe coherent struc-
tures as linear instabilities of the mean flow via a modal analysis. These analyses
rendered instability modes reminiscent of observed structures, but limited compu-
tational abilities prevented global studies to investigate any discrepancies. In the
interim of advancements in computational power, local studies were expanded upon
with the parabolized stability equations (PSE), a marching method able to prop-
agate local analyses downstream. Most times, the computed modes agreed well
with data, such as Gudmundsson and Colonius (2011) who showed that PSE solu-
tions for an experimentally measured jet mean flow yielded good predictions for the
dominant frequency/azimuthal mode structures educed from a near-field caged mi-
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crophone array. However, some discrepancies remained, and theoretical limitations
in the PSE framework warranted alternative approaches. Further, once fully global
studies were tractable, Garnaud et al. (2013a) found that global calculations were
inadequate, with a stable eigenvalue spectrum and physically irrelevant eigenmode
shapes, and that the characterization of instability mechanisms required transient
(non-modal) growth.

Resolvent analysis permits this characterization, has been applied to jets by several
authors (Garnaud et al., 2013b; Jeun, Nichols, and Jovanović, 2016; Semeraro,
Lesshafft, et al., 2016; Schmidt et al., 2018; Lesshafft et al., 2019), and has lead
to the characterization of two essentially different linear amplification mechanisms,
one associated with the traditional, modal (parallel-flow) Kelvin-Helmholtz (KH)
instability and the other as an Orr-type mechanism (also identified through PSE by
Tissot, Lajús Jr, et al. (2017)). At those frequencies where the dominant singular
value is significantly larger than the subdominant ones (which we refer to as low-
rank behavior), the dominant modes are qualitatively similar to coherent modes
extracted from data (Schmidt et al., 2018). However, when the response is not low
rank, a non-trivial structure of the nonlinear forcing terms may lead to discrepancies
between resolvent and observed modes. Thus, it is necessary to model the nonlinear
forcing to attain resolvent analyses that are quantitatively predictive.

As described earlier, we approach closure of the nonlinear forcing by adapting the
concept of an eddy-viscosity from RANS turbulence modeling. The unique feature
to this approach is that the turbulencemodel directly alters the resolvent operator and
therefore the associated resolvent basis. Considering SPOD provides the optimal
basis of the observed flow, SPOD is an ideal target for assessing the ability of
a classical turbulence model for closure. In the case that a perfect model could
be found, the model would render a resolvent basis that matches SPOD, meaning
that the resolvent and SPOD modes coincide. We therefore define a data-informed
variational problem in Chapter 2 that seeks an optimal eddy-viscosity field that
matches the most energetic SPOD mode with the first resolvent mode. We then
show that we can achieve similar agreement using standard eddy-viscosity models,
including one directly inferred from a corresponding Reynolds-Average Navier–
Stokes (RANS) simulation.

This final observation, using low-cost mean-flow quantities from RANS, brings
us back to our original motivation for performing resolvent analysis: a low-cost,
reduced-order turbulence modeling framework. We now speculate about a complete
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Figure 1.1: A conceptual turbulent flow design framework. The dotted lines indicate
the use of only the baseline simulation (via LES) data for validation and for im-
proving models. Once flow geometry and operating parameters are set, preliminary
results are found via RANS and through an iterative analysis to ensure that solu-
tions are self-consistent between solutions of the RANS equations and the turbulent
structures found via resolvent analysis. Once converged, predictions of the fluctu-
ating quantities may be made and optimizations can be posed via the resolvent for
various engineering quantities through alterations to flow geometry. Those sections
highlighted in orange are improved and addressed in this thesis.

framework for predicting turbulent quantities and tie components of this framework
to efforts discussed in this thesis.

1.4 Towards fully predictive jet models and jet design
The overarching framework that this work seeks to improve, depicted in Figure 1.1,
is one where we may couple RANS and resolvent analysis such that the fluctuating
field is accurately predicted and ultimately controlled. The previous discussion has
focused on the specific accuracy of resolvent analysis using data obtained via LES,
however, to be computationally tractable, resolvent analysis must rely on cheaper
strategies for obtaining the mean flow. Compared to LES, Reynolds Averaged
Navier–Stokes (RANS) simulations are a much cheaper and simpler, albeit less
accurate, modeling alternative. RANS simulations are orders of magnitude cheaper
than LES and DNS, typically solved within minutes on standard laptops. However,
RANS simulations are infamous for a lack of generality, the need to tune various
coefficients within the governing equations, and their inability to predict the statistics
of the fluctuating fields, such as the acoustic field.

For the case of the acoustic field, predictions have typically relied on the acoustic
analogy (Lighthill, 1954). Similar to our approach via resolvent analysis, the analogy
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takes the form of a linear operator acting on fluctuations driven by a source term,
typically found via RANS formany current analogies. However, such approaches are
indifferent to the development of the hydrodynamic structures and those structures’
close connection to far-field sound propagation (Jordan and Colonius, 2013) and,
as a result, have failed to produce universal models. As an example for our RANS-
resolvent approach, and a proof of concept of those components highlighted in
orange in Figure 1.1, we extend resolvent analysis to that of an acoustic analogy
for predicting the acoustic field and perform calculations based solely on RANS
quantities.

Finally, we note that this overarching framework subsumes, rather than replaces,
traditional modeling frameworks and that this linear approach brings an opportunity
to use several well-established strategies for imposing optimization upon the flow
(Brandt et al., 2011; Mettot, Sipp, and Bézard, 2014; Toedtli, Luhar, and McKeon,
2019; Pickering, Rigas, Schmidt, et al., 2020). Thus, providing the means for a
final feedback to the mean flow solver to shape the mean flow field by changing the
geometry, which while outside this thesis, would provide a fully automated design.
Current software packages could handle such shape optimization once cost functions
for the far-field sound are determined.

1.5 Contributions and outline
In this thesis, we explore three different aspects of furthering resolvent models of jet
turbulence: classical turbulence modeling for resolvent analysis, characterization of
three amplification mechanisms, and prediction of jet noise.

In Chapter 2, we quantitatively test the extent to which a turbulence, or eddy-
viscosity, model improves agreement between observed large-scale structures, educed
via SPOD, and those computed from resolvent analysis. To find the optimal agree-
ment via a turbulence model, we develop, in § 2.3, a data-informed optimization
framework that identifies changes to the resolvent operator that lead to greater align-
ment with SPOD. We suggest that the eddy-viscosity approach acts as a proxy for
modeling the effect of turbulence on large-scale structures, and in § 2.4 we find
this approach provides substantial improvements in agreement (i.e. when compared
to a baseline case that used a constant eddy-viscosity model corresponding to a
value of Re) = 3 × 104 (Schmidt et al., 2018)). By directly optimizing the eddy
viscosity field to achieve the best alignment, we found alignments between resolvent
and SPODmodes as high as 96% or improvements of over 10-fold from the baseline
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alignment (i.e. 8% to 80%). Further, we find that the addition of an eddy-viscosity
model to the resolvent operator highlights its effect on the different amplifications
mechanisms in the turbulent jet, Orr-type, Kelvin-Helmholtz-type, and lift-up.

In § 2.7, we assess three additional eddy-viscosity models against the optimal
eddy-viscosity field, which provides the upper bound for mode agreement. Of these
models, we found that traditional eddy-viscosity models (e.g. RANS based) perform
nearly as well as the optimal eddy-viscosity models in aligning the most energetic
mode. The traditional models even outperformed the optimal model (i.e. optimal
in the first mode) when considering the subdominant modes, giving the greatest
diagonalization of the forcing CSD at< = 0, (C = 0.6 (i.e. ability to model the effect
of nonlinear forcing). Finally, we test the modeling potential of a RANS-inferred
resolvent analysis over frequency, azimuthal wavenumber, and Mach number. We
find the sensitivity to be weak, and that with a calibration of one constant, the
approach provides significantly improved results for three turbulent jets over a
substantial frequency range and azimuthalwavenumbers. Overall, these results show
that “classical” eddy-viscosity models (RANS or a mean-flow consistent model) aid
in estimating the impact of the Reynolds stresses for resolvent analysis.

In Chapter 3, we implement the eddy-viscosity augmented resolvent approach and
find it sheds further light on the known amplificationmechanisms (Kelvin-Helmholtz
(KH) and Orr) and leads to the global identification of a third amplification mech-
anism, lift-up. In§ 3.3 we perform a global resolvent analysis at (C = 0 and SPOD
at (C → 0 for all three turbulent jets and find the presence of streamwise elongated
structures, known as streaks. In§ 3.4, we expand the analysis to non-zero frequencies
and multiple wavenumbers and discuss the interplay of the Kelvin-Helmholtz, Orr,
and lift-up mechanisms in frequency-wavenumber space. We find that at moderate
frequencies, KHbecomes the globally dominantmechanism, and theOrrmechanism
is active over all frequencies but plays a subdominant role at those frequencies and
azimuthal wavenumbers where lift-up and KH are active. The behavior of the< = 0
response is unique, as axisymmetric streaks cannot exist; rather, the Orr response is
dominant for low and high frequencies, with the KH response dominating over an
intermediate-frequency regime centered on (C = 0.6. For non-axisymmetric modes,
the lift-up mechanism, and resulting streak response, is dominant as (C/< → 0,
although with progressively higher wavenumber, lift-up responses are limited in
spatial extent to nearer the nozzle exit. This latter observation is detailed in§ 3.5
as the analysis is truncated towards the nozzle, and we find that the azimuthal
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wavenumber of dominant streak responses is inversely proportional to shear layer
width and scales with ∼ 1/G.

In Chapter 4 we extend resolvent analysis to that of an acoustic analogy relating
the near-field forcing to both the near-field and far-field acoustics, the latter being
100 diameters from the nozzle. Leveraging the availability of a LES database,
we examined resolvent-based reconstructions of the acoustic near- and far-field of
round, turbulent " 9 = 1.5 and " 9 = 0.9 jets. We represented the forcing cross-
spectral density matrix with a truncated set of resolvent modes and approximate the
amplitudes of the modes with best-fit expansion coefficients of realizations from the
LES acoustic field. In§ 4.4, we find that relatively low-rank models comprising as
few as 1 resolvent mode can accurately reconstruct the acoustic field for the first two
azimuthal modes for a " 9 = 1.5 jet and the < = 0 azimuthal mode for the " 9 = 0.9
jet, whereas about five modes were required for the higher azimuthal modes (i.e.
< = 2 and < = 1, 2 for " 9 = 1.5 and " 9 = 0.9, respectively).

Based on the ability of the rank-1 reconstructions to describe much of the RMS
energy, we investigated a simple model in§ 4.4 to collapse the forcing coefficients to
one scaling function per wavenumber (and Mach number). We found that a power
law representation, with only a scaling and a power value, suffices for describing
the forcing coefficients for the optimal resolvent mode. Ultimately, we find that the
rank-1 < = 0 resolvent models estimate the peak noise to within 2dB for both the
" 9 = 1.5 and " 9 = 0.9 jets.

We then conclude in Chapter 5 with a summary of results and present a number of
areas for future work.
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C h a p t e r 2

OPTIMAL EDDY VISCOSITY FOR RESOLVENT-BASED
MODELS OF COHERENT STRUCTURES IN TURBULENT JETS

Under Review in the Journal of Fluid Mechanics

Chapter Abstract

Response modes computed via linear resolvent analysis of a turbulent mean-flow field
have been shown to qualitatively capture characteristics of the observed turbulent coherent
structures in both wall-bounded and free shear flows. To make such resolvent models
predictive, the nonlinear forcing term must be closed. Strategies to do so include imposing
self-consistent sets of triadic interactions, proposing various source models, or through
turbulence modeling. For the latter, several investigators have proposed using the mean-
field eddy viscosity acting linearly on the fluctuation field. In this study, a data-driven
approach is taken to quantitatively improve linear resolvent models by deducing an optimal
eddy-viscosity field that maximizes the projection of the dominant resolvent mode to the
energy-optimal coherent structure educed using spectral proper orthogonal decomposition
(SPOD) of data from high-fidelity simulations. We use large-eddy simulation databases for
round isothermal jets at subsonic, transonic, and supersonic conditions and show that the
optimal eddy viscosity substantially improves the agreement between resolvent and SPOD
modes, reaching over 90% agreement at those frequencies where the jet exhibits a low-
rank response. We then consider a fixed model for the eddy viscosity and show that with
the calibration of a single constant, the results are generally close to the optimal one. In
particular, the use of a standard Reynolds-Averaged- Navier–Stokes (RANS) eddy-viscosity
resolvent model, with a single coefficient, provides substantial agreement between SPOD
and resolvent modes for three turbulent jets and across the most energetic wavenumbers and
frequencies.

2.1 Introduction
Resolvent analysis (also known as input/output analysis) determines a volumetric
distribution of forcing in the frequency domain that gives rise, when acting in a
time-invariant flow, to the most amplified linear response, typically measured in
terms of its total kinetic energy. It is an important tool in stability and transition
analysis (Trefethen et al., 1993; Farrell and Ioannou, 1993; Schmid, Henningson,
and Jankowski, 2002; Jovanović and Bamieh, 2005), and has more recently been
proposed as a reduced-order model of coherent structures in fully-developed turbu-
lence (McKeon and Sharma, 2010; Hwang and Cossu, 2010b). In the latter context,
resolvent analysis can be derived by partitioning the Navier–Stokes equations into
terms that are linear and nonlinear with respect to perturbations. Such a rearrange-
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ment of the equations is exact, and the equations may be explored without recourse
to any further modeling. With varying degrees of formality, similar approaches were
proposed in the past (Malkus, 1956; Michalke, 1971; Crighton and Gaster, 1976;
Butler and Farrell, 1992), but increases in computer power that speed up the singular
value decomposition (SVD) of the linear operator using direct LU decomposition
(multi-frontal algorithms for sparse systems) have allowed a detailed characteriza-
tion of the resolvent spectrum in several turbulent, canonical wall-bounded (Hwang
and Cossu, 2010a; Hwang and Cossu, 2010b; McKeon and Sharma, 2010; Sharma
and McKeon, 2013; Moarref, Sharma, et al., 2013) and free shear flows (Jeun,
Nichols, and Jovanović, 2016; Schmidt et al., 2018).

At those frequencies where the dominant singular value is significantly larger than
the subdominant ones (which we refer to as low-rank behavior), the dominant modes
are qualitatively similar to coherentmodes extracted fromdata (Schmidt et al., 2018).
However, when the response is not low rank, a non-trivial structure of the nonlinear
forcing terms may lead to discrepancies between resolvent and observed modes.
Thus, it is necessary to model the nonlinear forcing to attain resolvent analyses that
are quantitatively predictive. Previous studies have considered several approaches
for modeling the nonlinear forcing in linear analyses. These include empirical
models (Bechara et al., 1994; Tam and Auriault, 1999; Cavalieri, Jordan, Agarwal,
et al., 2011; Cavalieri and Agarwal, 2014; Towne, Bres, and Lele, 2017), estimation
given partial statistics of the response (Zare, Jovanović, and Georgiou, 2017; Towne,
Lozano-Durán, and Yang, 2020; Martini et al., 2020), and/or the use of a turbulent,
or eddy, viscosity. An eddy viscosity may be motivated by concepts underlying
the triple decomposition (Reynolds and Tiederman, 1967; Reynolds and Hussain,
1972), which identifies the Reynolds stresses as acting on the coherent fluctuations
(from both the coherent and incoherent fluctuations), even though the phase average
used to define the coherent part of the turbulent-viscosity field is ambiguous in
unforced turbulent flows. Many studies have applied eddy-viscosity models in
the wall-bounded turbulence literature (Del Alamo and Jimenez, 2006; Cossu,
Pujals, and Depardon, 2009; Pujals et al., 2009; Hwang and Cossu, 2010a; Hwang
and Cossu, 2010b; Hwang, 2016; Vadarevu et al., 2019; Hwang and Eckhardt,
2020) either through implementation of the Cess (1958) model or by estimating
the eddy-viscosity field via the Reynolds stresses and the mean shear rate of strain.
Similarly, global stability analyses have applied eddy-viscosity models to identify
and/or control forced or self-sustained resonances in transitional and turbulent flows
(Crouch, Garbaruk, and Magidov, 2007; Meliga, Pujals, and Serre, 2012; Mettot,
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Sipp, and Bézard, 2014; Sartor, Mettot, and Sipp, 2014; Semeraro, Jaunet, et al.,
2016; Tammisola and Juniper, 2016; Rukes, Paschereit, and Oberleithner, 2016;
Oberleithner, Paschereit, and Wygnanski, 2014). These studies implemented eddy
viscosity on an ad hoc basis, citing improved qualitative agreement or improved
integrated energy-densities.

In a more quantitative sense, eddy-viscosity enhanced linear models have also
proven useful for assimilating known data to reconstruct observed energy spectra
and mean-flow quantities. Moarref and Jovanović (2012) showed that a data-driven,
white-in-time forcing could reproduce the DNS-based turbulent energy spectrum
and, similarly, Illingworth, Monty, and Marusic (2018) could match DNS energy
spectra using time-resolved velocity measurements. More recently, Towne, Lozano-
Durán, and Yang (2020) showed that incorporating an eddy-viscosity model led to
accurate estimates of space-time statistics using partially known data from DNS.
Finally, Pickering, Towne, et al. (2020) used an eddy-viscosity enhanced resolvent
model to reconstruct the large-eddy simulation (LES) acoustic field of transonic
and supersonic turbulent jets at a significantly lower rank when compared to their
non-eddy-viscosity enhanced computations. Other approaches have implemented
eddy-viscosity fields to develop self-consistent models, such as Yim, Meliga, and
Gallaire (2019) or Hwang and Eckhardt (2020), where the former study coupled a
harmonically forced, quasi-linear resolvent analysis with RANS equations, citing
eddy viscosity as a necessary link between the coherent and incoherent perturbation
dynamics.

Although the utility of eddy-viscosity enhanced linear models for turbulent model-
ing and control has become increasingly apparent, a quantitative assessment of their
effect on turbulent structures is lacking; even more, it is unclear which statistics
turbulence models should seek to predict. One appealing target is modes educed
by spectral proper orthogonal decomposition (SPOD), as these modes optimally re-
construct the turbulent kinetic energy and represent space-time coherent structures
(Towne, Schmidt, and Colonius, 2018). In fact, the SPOD has a theoretical con-
nection with resolvent analysis. Towne, Schmidt, and Colonius (2018) showed that
if the resolvent forcing modes, at a given frequency and wavenumber, are mutually
uncorrelated, then the resolvent response modes are identical to the SPOD modes.
Likewise, discrepancies between the SPOD and resolvent modes imply correlated
forcing modes.

Morra et al. (2019) applied a similar line of thinking by including an eddy viscosity in
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their resolvent analysis of turbulent channel flow, showing that the resulting resolvent
modes were in greater agreement with the SPOD modes educed from high-fidelity
simulation data than resolvent analysis using only molecular viscosity. We extend
this approach to turbulent jets, but consider a more general framework. The central
question we ask is: how well can the inclusion of an eddy-viscosity model in the
resolvent operator approximate the correlations of the forcing cross spectral density
tensor? In this approach, an ideal model would render any remaining forcing as
uncorrelated, meaning that the resolvent and SPOD modes coincide. We therefore
define a data-informed variational problem that seeks an optimal eddy-viscosity field
that maximizes the projection of the first SPOD mode on the first resolvent mode.
We then show that we can achieve nearly optimal projections using standard eddy-
viscosity models, including one directly inferred from a corresponding Reynolds-
Average Navier–Stokes (RANS) simulation.

The work presented here is also relevant to a broader debate taking place regarding
the interpretation of resolvent analysis. Since we can define the resolvent operator
from the full nonlinear equations without introducing approximations or closures,
it is attractive to proceed without introducing ad hoc models such as eddy viscosity,
since we can still consider the framework exact. With a minor caveat (i.e. while
exact, the resolvent decomposition is not necessarily unique as it can depend on
the choice of dependent variables used to express the governing equations (Karban
et al., 2020)), this implies that the forcing terms are physically interpretable (i.e.
measurable) quantities. This perspective is, in our opinion, valuable, and may be
pursued alongside efforts (such as the present work) aimed at empirically modeling
the forcing. However, there is a subtlety that confounds the separation between
“exact” and “modeled” resolvent analyses: namely, it may not be possible to com-
pute, with meaningful accuracy, the exact resolvent modes in high Reynolds number
flows, particularly when the mean flow is two- or three-dimensional. The fine-scale
structure of the modes can require resolutions similar to DNS, and inversion of
the resulting linear systems for singular value decomposition can be prohibitive.
A survey of resolvent analyses conducted to date on multidimensional base flows
shows that a variety of regularizations of the resolvent operator have been used to
reduce the computational burden. By regularizations, we mean linear modifications
to the operator that, whether through physical or numerical justification, provide
results that are free from numerical artifacts or which more closely resemble ob-
served quantities. These include the use of eddy-viscosity models (as discussed at
length above), fourth-order numerical filters (Jeun, Nichols, and Jovanović, 2016),
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case " 9 '4 9
?0
?∞

)0
)∞

=cells ΔC0∞/� Δ(C

subsonic 0.4 4.5 × 105 1.117 1.03 15.9 × 106 0.2 0.049
transonic 0.9 1.01 × 106 1.7 1.15 15.9 × 106 0.2 0.022
supersonic 1.5 1.76 × 106 3.67 1.45 31 × 106 0.1 0.026

Table 2.1: Parameters, sampling rate, and frequency resolution for the LES.

effective Reynolds numbers (Schmidt et al., 2018), and linear damping (Yeh and
Taira, 2019).

From a more general perspective, the present work also has a connection to the
building of data-augmented turbulence models (Duraisamy, Iaccarino, and Xiao,
2019). Here, we specifically target the modeling of unsteady features (Wang et
al., 2018; Maulik et al., 2019) and the optimal eddy-viscosity fields found, at
each frequency-wavenumber pair, which are analogous to field-inversion steps (also
based on variational data-assimilation methods, Foures et al. (2014) and Parish
and Duraisamy (2016)) that assist Machine learning techniques in generating eddy-
viscosity models from mean-flow quantities.

We organize the paper as follows. In § 2.2 we outline the governing equations,
resolvent analysis, and SPOD. In § 2.3 we discuss the optimization framework
developed to match, or align, SPOD and resolvent modes, and the specific eddy-
viscosity models examined. § 2.4 provides the resulting resolvent mode shapes
found via the four eddy-viscosity models and § 2.5 analyzes the associated optimal
eddy-viscosity fields. In § 2.6 we show a favorable impact of the eddy-viscosity
models on the subdominant resolvent modes and then conclude the analysis in
§ 2.7 by assessing the sensitivity of the RANS eddy-viscosity model. In this final
section, we ultimately find a frequency independent RANS eddy-viscosity field that
performs well for three turbulent jets (i.e. subsonic, transonic, and supersonic)
and their most energetic frequencies ((C ∈ [0.05, 1]) and azimuthal wavenumbers
(< ∈ N ⊂ [0, 5]).

2.2 Methods
The LES database, resolvent analysis, and SPOD were described in Schmidt et al.
(2018) and Towne, Schmidt, and Colonius (2018). For brevity, we only recall the
main details here.
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Large Eddy Simulation database
The flow solver Charles was used to compute the LES databases, including subsonic
(Mach 0.4), transonic (Mach 0.9), and supersonic (Mach 1.5) cases; Brès, Ham,
et al. (2017) contains the details on the numerical method, meshing, and subgrid-
models. Experiments conducted at PPRIME Institute, Poitiers, France were used to
validate the Mach 0.4 and 0.9 jets (Brès, Jordan, et al., 2018). Table 2.1 provides
a summary of parameters for the three jets considered. Parameters include the
Reynolds number based on diameter '4 9 = d 9* 9�/` 9 (where subscript 9 specifies
the value at the centerline of the jet nozzle exit, d is density, ` is viscosity) and
the Mach number, " 9 = * 9/0 9 , where 0 9 is the speed of sound. The simulated
" 9 = 0.4 jet corresponds to the experiments in Cavalieri, Rodríguez, et al. (2013),
Jaunet, Jordan, andCavalieri (2017), andNogueira et al. (2019)with the same nozzle
geometry and similar boundary-layer properties at the nozzle exit. Throughout the
thesis, reported results are non-dimensionalized by the mean jet velocity * 9 , jet
diameter �, and dynamic pressure d 9*2

9
. We report frequencies in Strouhal number,

(C = 5 �/* 9 , where 5 is the frequency.

Each database comprises 10,000 snapshots separated by ΔC0∞/�, where 0∞ is
the ambient speed of sound, and is interpolated onto a structured cylindrical grid
G, A, \ ∈ [0, 30] × [0, 6] × [0, 2c], where G, A, \ are streamwise, radial, and azimuthal
coordinates, respectively. Variables are reported by the vector

q = [d, DG , DA , D\ , )]) , (2.1)

where DG , DA , D\ are the three velocity components, and a standard Reynolds decom-
position separates the vector into mean, q̄, and fluctuating, q′, components

q(G, A, \, C) = q̄(G, A) + q′(G, A, \, C). (2.2)

Resolvent analysis
We start with the nonlinear flow equations of the form

mq

mC
= F (q), (2.3)

where F is the time-independent compressible Navier–Stokes operator (plus conti-
nuity and energy). Substituting Equation (2.2) for q and separating terms linear in
state perturbations, q′, to the left-hand side gives

mq′

mC
−A(q̄)q′ = f (q̄, q′), (2.4)
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where
A(q̄) = mF

mq
(q̄) (2.5)

is the linearized flow operator (provided in Appendix A.2) and f contains the
nonlinear terms and any additional external inputs (e.g. environmental noise or
perturbations at the boundary).

For the round, statistically-stationary turbulent jets we consider, Equation (2.4) is
Fourier transformed both temporally and azimuthally to the compact expression

(8lI − A<)q<,l = f<,l, (2.6)

where l = 2c(C is the frequency and < represents the azimuthal wavenumber.
We can then rewrite Equation (2.6) by defining the resolvent operator, Rl,< =

(8lI −A<)−1,
q<,l = R<,lf<,l, (2.7)

and introduce the compressible energy norm (Chu, 1965) via the matrixW ,

〈q1, q2〉� =
∫ ∫ ∫

q∗1diag
(

)̄

Wd̄"2 , d̄, d̄, d̄,
d̄

W(W − 1))̄"2

)
q2AdAdGd\ = q∗1Wq2,

(2.8)
to the forcing and response, whereW = W 5 = W@. The resolvent modes under
this norm are then found by taking the singular value decomposition of the weighted
resolvent operator,

R̃<,l =W
1/2
@ R<,lW

−1/2
5

= Ũ<,l�<,lṼ
∗
<,l, (2.9)

where the diagonal matrix �<,l contains the ranked gains and the columns of
U<,l = W −1/2

@ Ũ<,l and V<,l = W −1/2
5

Ṽ<,l contain the response and forcing
modes, respectively. These modes are orthonormal in the energy norm, Equation
(2.8),

U ∗<,lWU<,l = V
∗
<,lWV<,l = I , (2.10)

and recover the resolvent operator from Equation (2.7) as,

R<,l = U<,l�<,lV
∗
<,lW . (2.11)

For the resolvent analysis presented here, just as in Schmidt et al. (2018), the above
equations are discretized in the streamwise and radial directions with fourth-order
summation by parts, finite differences (Mattsson and Nordström, 2004), while the
polar singularity is treated as in Mohseni and Colonius (2000) and non-reflecting
boundary conditions are implemented at the domain boundaries.
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Spectral Proper Orthogonal Decomposition
SPOD, similar to space-only proper orthogonal decomposition (POD) and originally
shown by Lumley (1967) and Lumley (1970), determines an optimal (i.e. in terms
of energy) set of orthogonal modes to describe a dataset, but unlike space-only
POD, produces modes that express both spatial and temporal correlation in the
data. Like dynamic mode decomposition, SPOD modes are computed at unique
frequencies. However, through appropriate averaging, SPOD naturally ranks modes
by energy and optimally accounts for the statistical variability of turbulent flows
(Towne, Schmidt, and Colonius, 2018). Thus, the associated SPOD modes provide
the ideal measurement tool to assess modes computed via resolvent analysis.

Decomposing the LES database Q, where Q represents the temporal ensemble
of perturbations (q′) found by applying the standard Reynolds decomposition, in
the azimuthal and temporal dimensions via the discrete Fourier transform gives
the decomposed data matrices, Q̂<,l. Multiplying the decomposed matrices, at a
particular frequency and azimuthal wavenumber, by their complex conjugate give
the cross-spectral density

S<,l = Q̂<,lQ̂
∗
<,l, (2.12)

to which we solve the SPOD eigenvalue problem presented by Lumley (1967) and
Lumley (1970)

S<,lW	<,l = 	<,l�<,l. (2.13)

The SPOD modes form the columns of 	<,l, ranked by the diagonal matrix of
eigenvalues �<,l = diag(_1, _2, ..., _# ). The modes are orthonormal in the norm
〈·, ·〉� , and satisfy 	∗<,lW	<,l = I . As a result, expansion of the cross-spectral
density tensor gives,

S<,l = 	<,l�<,l	
∗
<,l. (2.14)

In this study, we perform all SPOD computations with a Hamming window and
realization sizes of 256 snapshots with 50% overlap, resulting in 78 independent
realizations.

To avoid ambiguity in referring to computed SPOD and resolvent modes, we use the
following notation for the rest of the thesis. First, all computed modes, subscripts
<, l are dropped, but referenced when necessary in the text. Second,ψ= represents
the =-th most energetic SPOD mode, while v= and u= denote the resolvent forcing
and response, respectively, that provide the =-th largest linear-amplification gain
between v= and u=. Finally, we use the notation ψ1 : DG when referring to specific
components of each mode, as shown here with streamwise velocity.
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Using SPOD to inform resolvent analysis
As SPOD provides the optimal description of the second order flow statistics, we
wish to use this decomposition to inform our resolvent approach to match such
statistics. The connection can be made through multiplication of Equation (2.7)
by its complex conjugate and then applying the expectation operator to present the
relation between the CSD tensors of the forcing and response through the resolvent
operator,

Yqq = E[qq∗] = E[Rff ∗R∗] = RSffR∗. (2.15)

If q is projected onto the SPOD modes and f is projected onto the input resolvent
modes, β = V ∗Wf , where the vector # is the projection coefficients, then we may
write

	�	∗ = U�S##�U
∗, (2.16)

which highlights that if the forcing coefficients are uncorrelated (S## = �β ) then
the resolvent modes would be equivalent to the SPOD modes (Towne, Schmidt,
and Colonius, 2018). Conversely, when the resolvent and SPOD modes are not
identical, which is the case in our study, the forcing coefficients are correlated and
this correlation must be modeled.

Rather than pursuing a direct model of the forcing coefficients, we take an alternative
perspective that asks whether a modified resolvent operator, R) , can match one or
more of the dominant resolvent and SPOD modes. A trivial solution would be to
define the operator by the SPOD expansion, i.e. R) = 	, but this operator then
corresponds to the (discretization of any) general (non-local) linear operator, rather
than a specific partial differential equation (PDE). Instead, a practical model can be
obtained by posing a modified PDE of the linearized governing equations with one
or more unknown coefficients, and then finding the best choice of coefficients such
that the resolvent and SPOD modes are optimally matched. We propose such an
approach in the next section by exploiting an eddy-viscosity model, and develop an
optimization procedure that fits the parameters to align one, or more, of the most
dominant resolvent and SPOD modes.

To the extent that the modified resolvent operator achieves alignment of any one
of its output modes with a specific SPOD mode, we may directly interpret the
corresponding diagonal entry of Sββ as the forcing amplitude, _V, required to
reproduce the SPOD mode amplitude _, through the resolvent gain, f2. In other
words,

_= = f
2
=_β= for any = where u= = ψ=, (2.17)
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Turbulence model µ) form Parameter Data Abbreviation
Baseline* 1/Re) = 3.3̄×10−5 – – Baseline
Optimal field µ) (x) µ) (x) 	 Opt. µ)
Mean-flow consistent 2µ) (x) 2 q Mean µ)
RANS 2d�`:

2/n 2 – RANS µ)
Turbulent Re 1/Re) 1/Re) – Re),$?C

Table 2.2: Turbulence models investigated in this study. The baseline* case refers
to the results of Schmidt et al. (2018).

independent of whether the other modes are aligned (as other modes are orthogonal).

2.3 Models considered
Wenowadd an eddy-viscositymodel to the linearized governingEquations (2.4). We
follow the ad hoc model used in (amongst other references) Del Alamo and Jimenez
(2006) and Hwang and Cossu (2010b), which is typically justified by extending
eddy viscosity from its traditional use in modeling the mean Reynolds stresses to
modeling the effect of the “background turbulence” on the coherent motion.

The perturbation equations including the eddy viscosity are, with the replacement
` ↦→ `eff = ` 9 + `) , identical to the original linearized equations, provided one
accounts for the (spatial) variability of `) (equations provided in Appendix A.2).
There remains an unknown forcing that is the residual between the original forcing
and the “coherent” part that is is modeled by the eddy viscosity. Unfortunately, the
residual forcing no longer possesses its exact physical interpretation as the nonlinear
interactions of resolvedmodes. However, the advantage is that the resulting response
modes can significantly reduce the rank of the problem and lead to a residual forcing
CSD that is tractable to model when compared to the forcing CSD of the exactly
rearranged equations (Pickering, Towne, et al., 2020; Towne, Lozano-Durán, and
Yang, 2020).

In what follows, we refer to the modified linear operator with `) ≠ 0 as A) and
note that the operator depends on the chosen field for `) , which, upon discretization
becomes a vector µ) . Since we assume that `) is steady and axisymmetric, the
operators have a similar temporal/azimuthal Fourier transform that we denoteA)<.

We now consider four models for the eddy-viscosity field. The first model directly
optimizes the eddy-viscosity field to maximize agreement between the dominant
resolvent and SPOD modes. The second model fits an eddy viscosity to the LES
mean flow by minimizing the residual in the steady RANS equations. The third
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model uses an independently computed eddy-viscosity field from a RANS : − n
model. Finally, we consider a simpler constant eddy-viscosity model based solely
upon a turbulent Reynolds number.

For brevity, we refer to the modes computed with the above eddy-viscosity models
as EVRA (eddy-viscosity resolvent analysis) modes, while modes termed “baseline”
refer to those computed by Schmidt et al. (2018). We chose this study as a reference
for its extensive comparison of resolvent and SPODmodes across all three turbulent
jets and many wavenumbers and frequencies. In the baseline study, they chose an
effective Reynolds number of Re) = 3 × 104, a value that is an order of magnitude
smaller than the molecular Reynolds number, yet not consistent with the expected
magnitude of an eddy viscosity (i.e. Re) << 3 × 104) . Instead, we regard
this intermediate value as a regularization of the resolvent operator. Table 2.2
summarizes the various models investigated.

For exploratory purposes, we find an eddy-viscosity field that best matches the (so
modified) resolvent operator to the measured SPOD modes independently for each
frequency and azimuthal mode. The purpose is to gauge the sensitivity of the eddy
viscosity value needed to model the different frequencies and azimuthal modes, and
should not be interpreted as a proposal for a frequency-dependent eddy viscosity.

Parenthetically, within the following optimization framework we can consider any
turbulence model or regularization based on mean-flow quantities. A further exam-
ple is given in Appendix A.1, where we consider a linear damping model recently
proposed for resolvent analysis of unstable base flows (Yeh and Taira, 2019). In the
Appendix, we find that the linear damping improves agreement, but the performance
is generally inferior to the eddy-viscosity models. This is likely due to the mono-
lithic damping effect over all regions and wavenumbers, whereas the eddy-viscosity
methods directly addresses the effect of the Reynolds stresses both in regard to spe-
cific regions of the flow and the approach’s ability to account for spatial gradients
in the eddy-viscosity field.

Optimal eddy-viscosity field
Here we develop an optimization, computed independently for each frequency and
azimuthal mode, that finds the eddy-viscosity field that is optimal (i.e. the upper
bound) in matching the leading resolvent and SPOD modes. To find the analytical
expression that determines the sensitivity of mode agreement to an eddy-viscosity
field, we use a Lagrangian technique analogous to Brandt et al., 2011 that accounts
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for the non-modal behavior of the resolvent operator. This technique couples con-
straints from the governing equations, resolvent analysis, a normalization, and a cost
function (agreement of the leading SPOD and resolvent modes), into a Lagrangian
functional for whose stationary point provides the desired maximum.

To build the Lagrangian functional, we begin with the forward Equation (2.6) and
substituteLwithL) , the linear operator that includes an eddy-viscosity model. The
singular value/singular vector (v1,u1, f1) as defined in (2.11) is a solution of both
the forward Equation (2.6),

v1 = L)u1, (2.18)

where v1 replaces f as the forcing and u1 replaces q as the associated response,
and the resolvent eigenvalue problem,

Wu1 = f
2
1L
∗
)Wv1. (2.19)

The above resolvent eigenvalue solution is found by taking the energy norm of
Equation (2.7) and dividing by the forcing energy to give

u∗1Wu1

v∗1Wv1
= f2

1 =
v∗1R

∗
)
WR)v1

v∗1Wv1
. (2.20)

Rearranging and eliminating v∗= we arrive at

R∗)WR)v1 = f
2
1Wv1, (2.21)

where replacing R)v1 with u1 and multiplying both sides by R−∗
)
= L∗

)
recovers

Equation (2.19). Finally,we define a normalization constraint via,

〈u1,u1〉� = u∗1Wu1 = 1. (2.22)

The last component of the Lagrangian functional is the cost function,

J = u∗1Wψ1ψ
∗
1Wu1 − ;2µ∗)Mµ) , (2.23)

where the first term, representing the primary objective, measures the squared
projection, what we term the alignment or agreement, between the dominant SPOD
mode, ψ1, and the first resolvent mode, u1. The alignment measure, u∗1Wψ1, is
squared to ensure the cost function is real. For brevity, we denote the outer product
of the dominant SPOD mode as 	1 = ψ1ψ

∗
1 = 	∗1. The cost function may also
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consider multiple resolvent/SPOD modes by considering a (weighted if desired)
sum of the squared alignment terms.

The second term, −;2µ∗
)
Mµ) , is a Tikhonov regularization that penalizes values of

µ) that do not affect the alignment (high values ofµ) diminish the value of J ), with
M representing the cylindrical quadrature weights of the grid. As done in standard
regularizationmethods, the value of ;2 is chosen high enough to remove the values of
µ) in insensitive regions, but also sufficiently small to not interfere with the primary
objective (Hansen and O’Leary, 1993). This penalization is effective at minimizing
the eddy viscosity in non-turbulent regions of the flow such as the far field. A
substantial range of ;2 values (i.e. multiple orders of magnitude) removes negligible
regions of the eddy-viscosity field from the initial field without an observable drop
in the primary objective, alignment between u1 and ψ1.

We now formally construct the Lagrangian functional to include the cost function
(2.23), forward Equation (2.18), the resolvent eigenvalue problem (2.19), and the
normalization constraint (2.22) to give,

L = u∗1W	1Wu1 − ;2µ∗)Mµ)

− ũ∗1(L)u1 − v1) − ṽ∗1 (Wu1 − f2
1L
∗
)Wv1) − f̃1(u∗1Wu1 − 1) + 2.2.,

(2.24)

where (ũ1, ṽ1, f̃1) are Lagrange multipliers and f̃1 is real-valued as the corre-
sponding constraint is real). This results in a functional that depends on seven
variables,

L([u1, v1, f1], [ũ1, ṽ1, f̃1],µ) ). (2.25)

We can find the maximum of the cost function by finding the stationary point of
the entire functional (i.e. where variations with respect to each variable are zero).
Stationaritywith respect to the Lagrangemultipliers yields the state equations, which
are by definition satisfied, while stationarity with respect to the state variables yields:

mL
mu1

Xu1 = (2W	1Wu1 −L∗) ũ1 −Wṽ1 − 2f̃1Wu1)∗Xu1 = 0 (2.26)

mL
mv1

Xv1 = (ũ1 + f2
1WL) ṽ1)∗Xv1 = 0 (2.27)

mL
mf1

Xf1 = (ṽ∗1L
∗
)Wv1)∗Xf1 = 0, (2.28)

and the condition in the last equation may be simplified into ṽ∗1L
∗
)
Wv1 = ṽ

∗
1Wu1

using Equation (2.19). The stationary point is subsequently met by constructing the
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Figure 2.1: Schematic of the optimization framework for determining the optimal
eddy-viscosity field that maximizes the alignment/agreement between computed
resolvent modes, u1, and educed SPOD modes, ψ1. Included graphics are from
implementation of the full-field eddy-viscosity model at (C = 0.6, < = 0, and
" 9 = 0.4.

following system of equations and solving for the Lagrange multipliers:
−L∗

)
−] −2Wu1

]−1 L)f
2
1 0

0 u∗1W 0



ũ1

ṽ1

f̃1

 =

−2W	1Wu1

0
0

 . (2.29)

The upper left 2× 2 block is degenerate due to the state Equations (2.18) and (2.19)
(the couple, ũ1 = Wv1 and ṽ1 = −f−2

1 u1, is in the null-space of this block) and
the third column and line regularizes this system. Combining the three equations,
one can show that f̃1 = u

∗
1W	1Wu1, proving that f̃1 is a real value.

A final variation is taken with respect to the eddy-viscosity, µ) (which may be a
scalar or vector quantity), providing the direction of gradient ascent for the eddy-
viscosity field,

mL
mµ)

Xµ) = −ũ∗1
(
mL)
mµ)

Xµ)

)
u1 + f2

1 ṽ
∗
1

(
mL∗

)

mµ)
Xµ)

)
Wv1 − 2;2µ∗)MXµ) + 2.2

(2.30)

=

(
3J
3µ)

)∗
MXµ) . (2.31)
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The gradient at the : Cℎ grid point is then:

3J
3µ)

����
:

=M−1
:<

(
−u∗1, 9L

∗
<,8 9 ũ1,8 + f2

1W; 9v
∗
1,;L<, 98ṽ1,8

)
− 2;2µ),: + 2.2, (2.32)

where L<,8 9 = limn→0
L) +n Xµ<,8 9−L) ,8 9

n
, Xµ< being a null vector except at the <Cℎ

position where it is equal to 1. This tensor may be obtained either through automatic
differentiation ofL) with respect to µ) or by finite differences. Full storage of such
tensors is not an issue when finite differences, finite volumes, or finite elements are
used for the spatial discretization as the resulting tensors are extremely sparse.

The updated optimization parameter is then:

µ(:+1)
)

= µ(:)
)
+ U 3J

3µ)
, (2.33)

where : is the iteration number and U is a step size determined through a root
finding algorithm or a line search. If multiple SPOD/resolvent modes are consid-
ered for the optimization, then one has to solve Equation (2.29) for each couple
[	=, (v=,u=, f=)], and the total gradient 3J

3µ)
is the sum of each individual gradient,

while the line search for U is performed considering the full cost functional. Al-
though considering multiple modes is theoretically straightforward (and we present
one example in § 2.6), there are two practical issues. Each additional mode brings
further complexity to the gradient, increasing computation time, and the quality
of SPOD modes, 	=, become increasingly noisy with =, thus rendering gains via
the optimization as marginal. We discuss the latter issue in more detail throughout
the chapter. Figure 2.1 presents a schematic of the above optimization framework,
including graphical examples from the optimal eddy-viscosity field case at (C = 0.6,
< = 0, and " 9 = 0.4.

For some cases, the optimization step imparts a region of negative effective viscosity
(i.e. −`) > ` 9 ) presenting a challenge in both the physical interpretation and the
numerical stability of the resolvent operator. However, negative eddy viscosity is not
a unique concept to the algorithm presented. Literature surrounding eddy-viscosity
models used inRANSandLES,where the eddy and effective viscosities are identical,
attribute physical interpretations of negative eddy-viscosity to backscattering of
turbulent energy, which, inmany simulations, results in unstable simulations (Ghosal
et al., 1995). Common treatment of a negative eddy viscosity has included filtering
operations, ensemble averaging in homogeneous directions, and ad hoc clipping of
the eddy-viscosity field (Vreman, 2004), while inferences of the eddy-viscosity field
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via a Boussinesq approximation of data are often regularized to remove negative
regions (e.g. Semeraro, Lesshafft, et al., 2016). Here, we similarly elect to remove
any negative effective viscosity using a simple clipping strategy by setting any
negative regions to the molecular value. Although a reduction of effective viscosity
below the molecular viscosity is theoretically possible, we found that permitting the
optimization to do so either led to numerical instabilities or negligible improvements
in alignment.

The topology of the proposed cost function is complex, as µ) involves many de-
grees of freedom, and our optimizer may return a local rather than global maximum.
Therefore, a complete assessment of the sensitivity of initial conditions or demon-
stration of a globalmaximum is intractable, but the relative insensitivity of the results
to initial guesses and the fact that no other considered method outperforms the full
optimization (shown later in Figure 2.4) provides confidence in the robustness of
the maxima achieved. For all of the results presented here, we use the optimal
constant eddy-viscosity field results (introduced in § 2.3) as the initial condition for
the full-field optimizations.

Finally, the above optimization is derived considering the full (perturbation) state as
the output. The formulation is similar if the input and output spaces are restricted,
as shown in Appendix A.3. Such an extension is of particular use for experiments,
or coarse simulations, where observed data may be sparse.

Mean-flow consistent eddy-viscosity model
For many experimental and numerical datasets, including the LES databases used
here, an eddy-viscosity field is absent. We circumvent this issue by finding the
eddy-viscosity field that minimizes the error to which the mean flow satisfies the
(zero frequency and axisymetric wavenumber) linearized Navier–Stokes equations,
supplemented with an eddy-viscosity model, provided in Appendix A.2. To do so,
we find an eddy-viscosity field that minimizes the residual f given by

L)q = f . (2.34)

Thus we define the cost function,

J = −f ∗Wf , (2.35)

and develop a Lagrangian functional with the forward equation as the only additional
constraint to give

L = −f ∗Wf − ũ∗(L)q − f ). (2.36)
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Variations with respect to the residual are

mL
mf

Xf = (−2Wf + ũ)∗Xf = 0, (2.37)

and we may directly solve for the Lagrange multipliers as,

ũ = −2Wf . (2.38)

Then by taking variations with respect to the eddy-viscosity field gives,

mL
mµ)

Xµ) = −2(Wf )∗
(
mL)
mµ)

Xµ)

)
q. (2.39)

Similar to Equation (2.32), we obtain the update step:

3J
3µ)

����
:

= −2M−1
:<q 9L<,8 9W8;f ; , (2.40)

and find the field via a line search. These steps are described in greater detail in
the preceding subsection § 2.3. Figure 2.2 (a) provides the eddy-viscosity field that
optimally minimizes the residual of the mean-flow solution. The associated residual
field for this model reduced errors to approximately 10% of the original residual
field, with the exception where the shear layer is thin near the nozzle. The thin
shear-layer region improved by only ≈ 50%, but as shown later in the chapter, modes
in this region are generally less sensitive to the eddy-viscosity field.

We refer to this model as the mean-flow consistent eddy-viscosity model and we
optimally tune this field at each frequency by introducing the coefficient, 2, µ) =
2µ),"40=. Our interest in the value of 2 is not to propose a functional of its frequency
dependence (or assign to it a physical meaning), but to measure and observe the
overall variation and help determine whether a frequency independent coefficient
might suffice.

RANS-based eddy-viscosity field
We compute steady-state RANS solutions for each case to assess the applicability
of the associated eddy-viscosity field for resolvent analysis. For simplicity, we
perform the RANS computations in Fluent. The 2D axisymmetric grid extends
40 diameters in the streamwise directions and 20 diameters in the radial direction
with grid spacing mirroring that of the interpolated LES grid scaled to be four
times finer, giving 3 × 105 grid points. We set the inlet boundary conditions to the
base-flow profile from the LES simulations and use the standard 2-equation : − n
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Figure 2.2: (a) Mean-flow consistent eddy-viscosity model computed at zero fre-
quency and azimuthal wavenumber. (b) Eddy-viscosity field computed via a RANS
simulation for the " 9 = 0.4 jet, 2 = 1.

model (Launder and Spalding, 1983) for turbulence modeling. Coefficients used for
the model are variants of those suggested by Thies and Tam (1996), with turbulent
viscosity coefficient �` = 0.0874, dissipation transport coefficients �n1 = 1.4 and
�n2 = 2.02, turbulent Prandtl numbers for kinetic energy f: = 0.324 and dissipation
fn = 0.377, and the turbulent Prandtl number %A) = 0.422. However, the standard
^ − n model provided in ANSYS does not incorporate the Pope (1978) and Sarkar
et al. (1991) correction terms used in Thies and Tam (1996), requiring a calibration
of the mean-flow quantities by introducing a scaling constant 0 to �` = 0.0874/0,
f = 0.324/0, and fn = 0.377/0.

RANS mean-flow quantities closely match those of the LES for each of the three
turbulent jets using values for 0 of 1.2, 1.3, and 1.575, for " 9 = 0.4, 0.9, and 1.5,
respectively. While tuning of the constant 0 to match LES is not in the spirit of
obtaining a universal RANS model, we do so here to give the RANS-generated
eddy-viscosity field the best chance at being consistent with the LES results from
which the SPOD modes were educed. For a full assessment of the accuracy of
RANS predictions for turbulent jets, we refer the reader to Thies and Tam (1996)
and Georgiadis, Yoder, and Engblom (2006).

Figure 2.2 (b) presents the RANS-predicted eddy-viscosity field for the " 9 = 0.4
jet, and Figure 2.3 shows near identical agreement with the mean LES streamwise
flow. We observe similar agreement in radial velocity, density, and turbulent kinetic
energy, and also find close agreement for the " 9 = 0.9 and 1.5 jets; we do not
show these results for brevity. For determination of the optimal RANS-based eddy-
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Figure 2.3: Mean-flow profiles of both the " 9 = 0.4 LES and RANS, where the
RANS simulation was tuned to best match the LES mean flow. (a) presents the
streamwise mean velocity at three radial locations, A/� = 0.25, 0.5, 1,
versus streamwise distance from the nozzle, while (b) gives the streamwise mean
velocity at three streamwise locations, G/� = 0.5, 5, 10, versus radial
distance.

viscosity field at each frequency, we take the computed eddy-viscosity fields,

µ),'�#( = d�`
:2

n
, (2.41)

and introduce the coefficient, 2, µ) = 2µ),'�#( (just as in § 2.3). This final relation
underscores the difference between the traditional use of eddy viscosity with RANS
and ours via resolvent analysis. In the former context, eddy viscosity accounts for
all perturbations, while in resolvent analysis, the eddy viscosity is intended to model
the effect of nonlinear, triadic interactions and the background turbulence on the
linear structures. Thus, a coefficient of 2 < 1, for resolvent analysis, presents an
eddy viscosity that omits a fraction of the overall eddy-viscosity field. As will be
shown, we find all optimal values for 2 to be less than unity. This interpretation
may also be applied to the mean-flow consistent eddy-viscosity field presented in
the previous sub-section.

Constant eddy-viscosity field
Finally, we consider a simple, constant eddy viscosity, µ) = 1/Re) . We primarily
investigate this model because of its use in many turbulent jet studies that used a
Reynolds number based either upon the molecular viscosity (Jeun, Nichols, and
Jovanović, 2016; Lesshafft et al., 2019), on the order of 105 − 106, or through an
effective turbulent viscosity (Garnaud et al., 2013b; Schmidt et al., 2018), on the
order of 103 − 104. These, quite different, choices inevitably provided discrepan-
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cies in amplification gains and mode shapes across each study, particularly at low
frequencies (i.e. (C < 0.3 for < = 0) – showing that the Reynolds stresses have a
substantial impact on resolvent analyses of turbulent jets. Here, we find the optimal
Re) at each frequency and azimuthal mode number by a line search.

2.4 Optimal SPOD and resolvent mode alignment
In this section, we present modes predicted by the various EVRA models presented
in the previous section. We focus on the axisymmetric disturbances, < = 0, for the
" 9 = 0.4 jet, and report results for other azimuthal modes and jet Mach numbers in
section 2.7. We performed optimizations over the frequency range (C ∈ [0.05, 1],
resulting in the alignment coefficients displayed in Figure 2.4, with alignment defined
as |ψ∗1Wu1 |. This metric not only represents how similar the spatial structures,
represented as complex eigenfunctions, are between the dominant resolvent and
SPODmodes, but also measures the similarity in distribution of energy amongst the
five state variables. A value of 1 signifies perfect agreement, giving both identical
agreement in structure and distribution of energy in the state variables. Typically,
in this metric, values of approximately 0.4 or greater show qualitative agreement,
whereas values less than 0.4 have little visual similarity.

Figure 2.4 (a) shows that throughout the frequency range considered, the alignments
improve considerably from the baseline case (constant eddy viscosity with Re) =
3 × 104). The alignment is best for (C > 0.3, which corresponds to the frequencies
where the jet has a strong, low-rankKelvin-Helmholtz (KH) response (Schmidt et al.,
2018), as highlighted by Figure 2.4 (b), presenting the spectra of the first five SPOD
modes and their 95% confidence interval. For this region, (C > 0.3, the baseline
case gives reasonable (> 75% alignment) results, nonetheless, the eddy-viscosity
models still improve the modes to nearly perfect alignment. At lower frequencies,
(C ≤ 0.3, we find themost dramatic increase in alignments, from approximately 10%
to 80%. These substantial improvements, at (C ≤ 0.3, coincide with a change of
mode type, from KH to Orr (Schmidt et al., 2018), a viscous, non-modal instability
mechanism sensitive to Reynolds number (with rapidly increasing amplification as
Reynolds number increases), that dominates the non-optimized, low-frequency and
subdominant regions of the resolvent spectrum for the" 9 = 0.4 jet. We also find that
the optimal eddy-viscosity field provides the greatest alignment among the models,
which is at least suggestive that the optimization achieved a global maximum.

Surprisingly, the other eddy-viscosity models produce alignments close to the op-



30
(a) (b)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.4: (a) Optimal alignments for all methods investigated including the base-
line case, Re) = 3 × 104. (b) SPOD eigenvalue spectra of the first five modes for
< = 0, including the 95% confidence intervals and the modes associated with the
Kelvin-Helmholtz and Orr mechanisms.

timal eddy-viscosity field. The constant eddy-viscosity is nearly optimal at lower
frequencies (Orr-type modes), whereas the RANS and optimal mean-flow eddy-
viscosity models are more nearly optimal at higher ones. We stress that in the
optimal mean-flow, RANS, and constantµ) models, a different optimal value of the
coefficient (i.e. 2 and Re) ) is used at each frequency. We defer a discussion of the
sensitivity of these coefficients to § 2.7.

Starting with the lowest frequency, (C = 0.05, we now investigate the mode shapes
associated with the improved resolvent alignments achieved with the optimized
eddy-viscosity models. Figure 2.5 displays the real part of the fluctuating field for
all state variables for the dominant SPOD and resolvent modes, comparing resolvent
results using both the optimal eddy-viscosity field and the baseline casewith constant
Re) = 3 × 104. It is immediately apparent that the optimal eddy-viscosity resolvent
mode can closely match the observed mode shapes from SPOD for all variables
(including the correct distribution of energy), while the baseline resolvent mode
bears little resemblance to the SPOD modes for any of the variables.

Despite the increased alignment, there remains an obvious mismatch in D′
\
between

the SPOD and resolvent modes, highlighting a statistical limitation to our approach.
For the axisymmetric wavenumber, < = 0, perturbations in the azimuthal velocity
must be zero. Both resolvent models meet this constraint, however, the SPODmode
does not. One should then view the nonzero component in the SPOD mode as a
statistical error. Compared to the streamwise velocity, D′

\
is about five times smaller

in magnitude, and lacks the coherent wavepacket structure of the other variables.
The corresponding D′

\
contribution in the projection coefficient |ψ∗1Wψ1 | is ≈ 0.08,
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Figure 2.5: Real component of the fluctuating response state variables, q′ =
[d, DG , DA , D\ , )], and pressure, ?, at (C = 0.05, < = 0. The columns display
SPOD (ψ1), optimal eddy viscosity (u1), and baseline (u1) modes from left to
right, respectively. Contours (���) are given by ±0.5| |ψ1 : ·| |∞ of the SPOD
mode, where · is the fluctuating variable in question (with | |ψ1 : ·| |∞ values:
[d, DG , DA , D\ , ), ?] = [2.8, 198.6, 46.0, 37.2, 1.2, 10.4] × 10−3).

bounding the physical maximum of the optimization to |ψ∗1Wu1 | ≤ 0.92 without
considering additional error in the other variables. We link these statistical errors
to the weak low-rank behavior with this frequency, where there is little eigenvalue
separation between the dominant and subdominant modes (Schmidt et al., 2018).
We may then view the projection-coefficient value of 0.08 as a kind of error bar on
the alignments produced by the optimal eddy-viscosity field, as it is attempting to
align to a mode shape that is (at this frequency) in error by as much as about 10%.

The pressure field, a quantity of particular interest for jet noise, provides a relatively
simple representative mode shape for each case. We proceed by visualizing only
the fluctuating pressure component for the rest of the study, however, the projection
coefficients, |ψ∗1Wu1 |, account for the full state results. Further, for all response
pressure modes presented, we see similar trends and improvements in all flow
variables similar to Figure 2.5.

Figure 2.6 shows the pressure modes at two low frequencies, (C = 0.05 and 0.2,
and compares the results for all considered eddy-viscosity models. The top row
shows the dominant SPOD mode from the LES, the second row gives the dominant
resolvent mode for the baseline case, and the remaining rows provide the four
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Figure 2.6: Real component of the response pressure fluctuations (���, ±0.5| |ψ1 :
? | |∞) for (C = 0.05 and (C = 0.2 in the left and right columns, respectively. Row 1
presents the dominant SPOD mode for which the optimization seeks to match. The
following rows present results for the baseline, optimal eddy-viscosity field, mean-
flow consistent model, RANS eddy-viscosity model, and the optimal turbulent
Reynolds number.

optimizedmodels. At low frequencies, the baseline resolvent analysis cannot capture
the observed mode shapes, while the optimized eddy-viscosity models have much
better alignment with SPOD. The EVRAmodels increase the projection coefficients
by as much as 10-fold and display a wavepacket structure consistent with the SPOD
mode. Orr-typemodes dominate the low-frequency (i.e. (C < 0.3) baseline resolvent
spectrum (Schmidt et al., 2018), and we see that the eddy viscosity attenuates these
modes in favor of a KH-like response that peaks further upstream, consistent with
the observed SPOD modes.

Proceeding to higher frequencies, Figure 2.7 displays the dominant fluctuating
pressure modes for SPOD and the five EVRA models for (C = 0.6 and 1. The
baseline projection coefficients are already high for these frequencies, but are fur-
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Figure 2.7: Real component of the response pressure fluctuations for (C = 0.6 and
(C = 1 in the left and right columns, respectively. Rows present the equivalent
methods as described in Figure 2.6.

ther increased with the eddy-viscosity models, reaching 96% for the optimal eddy
viscosity. Here the differences in the mode shapes are subtle, with the streamwise
extent of the modes shortening from the baseline case to better match the SPOD at
both frequencies. At these higher frequencies, the jet response is a clear, low-rank
KH wavepacket (a modal, inviscid stability mechanism), and it is thus unsurpris-
ing that the results are relatively insensitive to the precise eddy-viscosity model.
However, the improved alignment is a product of the non-zero eddy-viscosity field,
showing that a turbulence model is still important.

For (C = 1, the optimized projection coefficient is falling compared to the (C = 0.6
case. This is due to the emergence of Orr-type modes with similar energy as the KH
modes. When performing SPOD in limited domains near the nozzle exit, the modal,
low-rank KH response continues to dominate at much higher frequencies in the near
nozzle region (Sasaki et al., 2017), but when considering the global response, the
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Figure 2.8: The optimal parameters across (C ∈ [0.05, 1] for (a) the optimal constant
field 1/Re) , (b) optimal eddy-viscosity field model, (c) the mean-flow consistent
model, and (d) the optimalRANSmodel. The optimal eddy-viscosity field parameter
shown is the maximum value of the field at each frequency, ‖µ) ‖∞, while the latter
two models present the optimal coefficient 2. The associated alignments for each
model/parameter are shown in Figure 2.4.

KH response becomes inferior, in energy, to the Orr response, which peaks further
downstream.

2.5 Analysis of the optimized eddy-viscosity fields
The previous section shows that the EVRA approach results in substantial alignment
of the dominant resolvent and SPOD modes. In this section, we examine the
optimal parameters associated with the eddy-viscosity fields to investigate how the
eddy viscosity improved the alignment and to identify potential universalities in
modeling coefficients.

Structure of the eddy-viscosity fields
For the constant eddy viscosity, RANS-based, and mean-flow consistent eddy-
viscosity fields, the optimization is over a single value, and we plot the optimal
values as a function of frequency (still for < = 0) in Figure 2.8 (a,c,d) and the
maximum value of the optimal field in 2.8 (b). We investigated several other metrics
for the optimal field and each metric provided similar trends and therefore, we chose
‖µ) ‖∞, as it gave the most intuitive comparison against the other scalar quantities.
For all models, the frequency dependence of the values is similar, with three regions
of interest: (C ∈ [0.05, 0.3], (C =∈ [0.3, 0.8], and (C ∈ [0.8, 1].

In the low frequency region, the baseline jet response comprises of spatially exten-
sive Orr-type modes that have a strong Reynolds number dependence, requiring a
relatively larger eddy viscosity to damp them. For (C = 0.05 the ratio of the molecu-
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lar Reynolds number to the optimal effective Reynolds number is ` 9/µ) ≈ 13, 500,
a four order-of-magnitude difference when compared to the molecular viscosity.

In the moderate frequency regime, where the baseline spectrum transitions from
the broadband, viscous Orr mechanism to the low-rank, inviscid KH mechanism,
eddy viscosity becomes less important, and we expect (confirming below, in § 2.7)
insensitivity to the overall value based on the relatively favorable alignment achieved
in the baseline case. As frequency increases, the responses transition back to a mix
of KH and Orr-type waves, with a progression towards broadband, viscous Orr
modes at higher frequency.

At these higher frequencies, we see that the low-frequency dependence on inverse
effective Reynolds number resumes, similar to low the frequencies. Interestingly,
this trend shows that at higher frequencies Re) → '4 9 such that the effect of
eddy viscosity “turns-off” as frequency increases and the associated wavepacket
wavelength becomes small (i.e. approaching finer-scale turbulence), as expected on
physical grounds.

Similar trends are observed for the mean-flow consistent and RANS eddy-viscosity
coefficients. For both eddy-viscosity fields, 2 is less than unity and only varies from
0.7 to 0.1with a few exceptions. These values suggest that the optimal eddy-viscosity
model is a fraction of the total RANS ormean-flow consistent eddy-viscosity models
that integrate all perturbations.

For the full-field eddy-viscosity optimization, we stress that its primary purpose
is to determine what may be an upper bound for how well any eddy-viscosity
model could perform. Given that the alignments between the resolvent and SPOD
modes were not significantly higher for the optimized scheme than for the modeled
eddy-viscosity approaches (with optimal parameters), the detailed eddy-viscosity
fields are of lesser importance. Still, some aspects of the physics, such as the
spatial locations where Reynolds stresses become important for each frequency,
are apparent in the optimized fields. Figure 2.9 presents the optimized fields for
two selected Strouhal numbers, comparing them to both the RANS and mean-
flow consistent eddy-viscosity fields scaled by their optimal coefficient 2 at each
frequency. In addition, the dominant resolvent mode, computed with the displayed
optimal-eddy-viscosity field, is shown for comparisonwith the eddy-viscosity fields.
The contours for the eddy-viscosity fields are set from 0 to the maximum value of
the (C = 0.6 optimal eddy-viscosity field.
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Figure 2.9: Comparisons of the optimal eddy-viscosity fields (i.e. full-field optimal,
mean-flowconsistent, andRANS) and the associated dominant resolventmode found
via the optimization for (C = 0.2 and 0.6. Contours for all six eddy-viscosity fields
are set from 0 to 3 × 10−3.

Overall, both frequencies present optimal eddy-viscosity fields that are complex,
unsurprising given the ability of the optimization to choose any eddy-viscosity
field, constrained only by the structure of the equations and positivity. The optimal
eddy-viscosity fields pinpoint the locations where linear structures break down (i.e.
where nonlinearities/Reynolds stresses become important) and inform what features
an eddy-viscosity model must include. In both cases, the optimization removes
viscosity from the potential core (i.e. the interior region of the jet relative to the
critical layer), when compared to the initial guess, while increasing the turbulent
viscosity just outside of the critical layer. The increase in eddy-viscosity is most
often observed just downstream of the peak amplitude of the wavepacket, coinciding
with each wavepacket’s decay downstream.

Although not entirely clear from Figure 2.9, these findings are reasonably consistent
with each of themodeled eddy-viscosity fieldswhen restricting the view to the region
where the resolvent/SPOD mode has significant amplitude. We can see that both
the RANS and mean-flow consistent eddy-viscosity fields present similar features
as the optimal field, explaining the ability of each model to achieve nearly optimal
results. We will show in the following section how such features also explain the
ability of the RANS and mean-flow consistent models to predict the subdominant
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Figure 2.10: Subdominant modes 2 and 3 at (C = 0.6, < = 0 in the left and right
columns respectively for SPOD, baseline, and all EVRA models.

modes, which require further turbulence modeling downstream.

2.6 Alignment of subdominant modes
Although the optimization presented only aligns the dominant SPOD and resolvent
modes, subdominant modes are also of interest, particularly as they are necessary to
reconstruct flow statistics in the near field and are relevant for modeling coherence
decay associated with the “jittering of wavepackets” to produce sound (Cavalieri,
Jordan, Agarwal, et al., 2011). In this section we seek to answer two questions:
whether alignment with only the dominant mode substantially alters the alignment of
the subdominant modes and the effect of expanding the optimization to subdominant
modes. Wefirst assess the former case using the optimal parameters for eachmethod.
We show the computed subdominant modes in Figure 2.10 for modes 2 and 3 for
the (C = 0.6, < = 0 frequency-wavenumber pair.

Comparing the second mode to the baseline case (Re) = 3 × 104), we find that
all EVRA models give significantly improved alignments, reaching ≈70% for the
RANS and mean-flow consistent models. Both the RANS and mean-flow consistent
models are superior to the optimal eddy-viscosity field, which is only fitted to align
the dominant mode. The RANS and mean-field models are also superior for the
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Figure 2.11: Projections of the first five SPOD modes into the first five resolvent
modes computed for all EVRA models at (C = 0.6, < = 0, including the 2-mode
optimization shown in Figure 2.12.

third, fourth, and fifth modes (the latter two not shown for brevity), but with an
alignment that falls off with increasing mode number.

To observe how well the optimization of the first SPOD mode models the forcing
statistics (i.e. diagonalizes the forcing CSD Sff ), we compare projections of the
first five SPOD modes with the first five modes from each eddy-viscosity method
(including a 2-mode optimization described next) in Figure 2.11. The plots show
that the EVRA models, in particular the RANS and mean-flow consistent models,
are superior at diagonalizing the CSD when compared to the baseline case.

Although the optimal eddy-viscosity field, aligned only with the dominant SPOD
mode, shows improvements in the subdominant modes, we can extend the opti-
mization to align an arbitrary number of subdominant modes and achieve alignment
superior to any eddy-viscosity model. However, convergence issues with increasing
SPOD mode number suggest that optimizing for many modes (e.g. = > 5) would
have marginal returns. For this study, we present only the optimization of both the
first and second modes at (C = 0.6, < = 0 to show the generality of the optimization
framework and the physical implications of the associated eddy-viscosity field for
the subdominant modes.

Figure 2.12 presents the aligned resolvent mode via the optimization and the asso-
ciated eddy-viscosity field for the first subdominant mode. By including the second
SPOD mode, the optimization can achieve an alignment of 77%, superior to any
of the other eddy-viscosity models, without altering the alignment of the dominant
mode, 96%. We also observe that the remaining subdominant modes also increase
in their projections, as shown in Figure 2.11. This observation is likely linked to
the difference in mechanisms of the dominant and subdominant modes at (C = 0.6,
< = 0. The dominant mode is KH-type, while the subdominant modes are of
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Figure 2.12: The second subdominant mode at (C = 0.6 and the associated eddy-
viscosity field that provides the optimal alignment for both modes. The contour for
the eddy-viscosity field is set to the same value as those shown in Figure 2.9 from 0
to 3 × 10−3.

Orr-type. By aligning just the first Orr-type mode, we observe improved alignments
for the entire family of Orr modes, conversely, alignment of only the KH mode does
not substantially improve Orr modes.

The increase in alignment results from additional eddy-viscosity located downstream
of the 1-mode, KH-type field,µ),1, shown in Figure 2.9. The secondmode imposes a
need for further eddy-viscosity acting further downstream and towards the centerline,
as representative of the Orr-mechanism at< = 0 for turbulent jets (Pickering, Rigas,
Nogueira, et al., 2020). We find that this additional downstream eddy-viscosity,
present in both the RANS and mean-flow consistent models, is responsible for
the increased subdominant mode alignment. Considering the simpler RANS (and
mean-flow) model also shows similar downstream structure, we investigate its merit
for a predictive model in the next section.

2.7 Towards a predictive EVRA model for turbulent jets
Through the previous sections, we have shown that both the RANS and mean-flow
consistent eddy-viscosity models perform well across Strouhal numbers from 0.05
to 1 at < = 0, provided the overall constant associated with their application to the
disturbance fields is optimal (at each frequency and azimuthal mode number). In this
section, we consider the sensitivity of the results regarding the choice of a frequency
(and wavenumber) independent constant, and show that over a range of frequencies
and azimuthal mode numbers, alignments are relatively insensitive to the choice of
a constant, such that a single, universal value may be acceptable. While both RANS
and mean-flow consistent models both performed well with optimal coefficients, we
focus only on the RANS : − n model, as it is better regarded as universal across
a range of flows. We then apply EVRA-RANS to the " 9 = 0.4 jet using a single
constant to six azimuthal wavenumbers, < = 0 − 5, and find substantially improved
predictions when compared to the baseline. We also find similar observations when
using the same EVRA-RANS model for both the transonic and supersonic jets.
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Figure 2.13: Alignments across all Strouhal numbers for the RANS eddy-viscosity
model coefficients compared with the optimal RANS coefficient at each frequency.
The RANS coefficients are 2 = [1, 0.5, 0.32, 0.2, 0.08].

Finally, we present the effect of the eddy viscosity on the resolvent spectra.

Frequency and azimuthal mode sensitivity
The optimal RANS coefficients (Figure 2.8) ranged from 2 = 0.7 − 0.004, with a
relatively constant region, 2 = 0.5, for moderate frequencies and, considering the
fully optimized eddy-viscosity field produced only marginally improved alignments
for most cases, the results may not be sensitive to the precise constant. We test
this hypothesis for the RANS model across a range of frequencies with proposed
“universal” values of constant 2 = [1, 0.5, 0.32, 0.2, 0.08]. We plot the resulting
alignments versus frequency in Figure 2.13. With little compromise, compared
to the optimal constant for each frequency, a single constant of 2 = 0.2 provides
significant alignment across all frequencies up to (C = 1. Although not shown for
brevity, we found similar observations using 2 = 0.08−1 for all threeMach numbers
and six azimuthal wavenumbers. In these cases, not only did 2 = 0.2 give the best
overall alignment, but the alignments were comparably insensitive to the value of 2
chosen over this range.

We do not present a rigorous justification for the value of 2 = 0.2, however, 2
may have a connection with LES eddy-viscosity modeling. If we compare the
empirical coefficients used in this RANS eddy-viscosity analysis, 2�`, to the square
of the Smagorinsky coefficient, �2

B , used for SGS eddy-viscosity fields in LES
(Smagorinsky, 1963), we can find that the value of 2 = 0.2 lies within the bounds
of wall-bounded and isotropic turbulence. Setting equal the products of each set
of coefficients, we find 2 = �2

B /�`. Then using the " 9 = 0.4 RANS coefficient,
�` = 0.073, and the commonly used range of �B, 0.1 for wall-bounded flows and
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Figure 2.14: Alignments for frequencies, (C ∈ [0.05, 1], and azimuthal wavenum-
bers, < = 0 − 5, for the (a) RANS eddy-viscosity model using 2 = 0.2 and the (b)
baseline, constant eddy-viscosity case (i.e. Re) = 3 × 104).

0.18 for isotropic turbulence (Zhiyin, 2015), we find that 2 = [0.14 − 0.45] (ranges
for the " 9 = 0.9, 1.5 jet are 2 = [0.15 − 0.48], [0.17 − 0.57], respectively). This
range approximately corresponds to the acceptable values found in Figure 2.13.

For nonzero azimuthal modes, Figure 2.14 presents the alignment of the EVRA-
RANS model with SPOD using 2 = 0.2 and the baseline case for < = 0 − 5.
The EVRA-RANS model substantially increases the alignments for all nonzero
wavenumbers. The results for < = 1 are particularly encouraging, with a uniform,
80% alignment across all frequencies. Azimuthal modes greater than 1 result in
poorer alignment, albeit much improved compared to the baseline case, especially
when < > 2.

Expanding to nonzero azimuthal wavenumbers, the eddy-viscosity field also affects
a third mechanism observed in the global SPOD spectrum (as (C → 0), the lift-up
mechanism (Pickering, Rigas, Nogueira, et al., 2020). Similar to the Orr mecha-
nism, the lift-up mechanism arises from triadic nonlinear interactions in the flow
(Hamilton, Kim, and Waleffe, 1995; Sharma and McKeon, 2013; Giovanetti, Sung,
and Hwang, 2017; Cho, Hwang, and Choi, 2018), identifying it as a likely bene-
factor to an EVRA approach. Figure 2.14 supports this claim, showing significant
improvements at low frequencies for nonzero wavenumbers. These observations
also agree with Pickering, Rigas, Nogueira, et al. (2020), who showed that resolvent
modes related to streaks required an eddy-viscosity model (using the TKE model
reported by Pickering, Rigas, Sipp, et al. (2019) with 2 = 0.0065). They also
observed that, in turbulent jets, the spatial extent of resolvent modes increase as
frequency decreases and that without an eddy-viscosity, modes extend indefinitely
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Figure 2.15: Alignments using the RANS eddy-viscosity model with coefficient 2 =
0.2 across Strouhal numbers (C ∈ [0.05, 1] and azimuthal wavenumbers < = 0 − 5
for the (a) " 9 = 0.9 and (b) 1.5 jets.

downstream for (C = 0. This is analogous to theory surrounding streaks where
the lift-up mechanism presents a rapid spatial growth of streamwise streaks until
viscous dissipation becomes dominant and the structures decay (Hultgren and Gus-
tavsson, 1981). Considering the significant improvements between alignments for
low-frequency and nonzero wavenumbers, we find the lift-up mechanism to also be
sensitive to an eddy-viscosity model.

Transonic and supersonic turbulent jets
We now generalize the RANS-EVRAmodel performance for both " 9 = 0.9 and 1.5
turbulent jets using 2 = 0.2. Figure 2.15 provides the alignments across frequencies
and azimuthal wavenumbers for each. The transonic jet gives substantial agreement
for < = 0 and < = 1 at about 80% for much of the frequency range, while < = 2
gives alignments of 60%, on average. For the supersonic jet, the agreement is not as
favorable, however, much improved from the Re) = 3 × 104 alignments (not shown
here for brevity).

The RANS eddy-viscosity model increases many of the alignments, however, poor
alignments remain, and these alignments appear to correspond to SPOD spectra
without large energy separation. As shown earlier in Figure 2.4, EVRA and SPOD
modes aligned best when there exists large eigenvalue separation between the first
and second SPOD mode. We find similar behavior here for all cases. Figure
2.16 presents the SPOD spectra of the first five modes across all six azimuthal
wavenumbers and three turbulent jets, with their associated 95%confidence intervals
in light blue. A handful of the spectra show a clear separation between mode
energies, such as those between the first and second mode for " 9 = 0.4, < = 0
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Figure 2.16: Spectra, and their associated 95% confidence interval in light blue, of
the first five SPOD modes for azimuthal wavenumbers < = 0 − 5 from left to right
and the subsonic, transonic, and supersonic jets from top to bottom, respectively.

and 1, for " 9 = 0.9, < = 0 and 1 (and higher frequencies for < = 2 − 5), and for
" 9 = 1.5, < = 1. In each case where there is large eigenvalue separation, we find,
fromFigures 2.14 and 2.15, significantly greater agreement in projection coefficients
between the resolvent and SPOD modes, while finding poor projections for cases
without clear separation in eigenvalues. We also observe this for the subdominant
modes investigated in the " 9 = 0.4, < = 0 case in § 2.6.

These observations point to a limitation to our method when comparing EVRA
modeswith SPODmodes. For the SPODmodeswithout clear eigenvalue separation,
the eigenvalues themselves fall within the uncertainty bands (i.e. 95% confidence
interval) of the other modes. The eigenvectors corresponding to these eigenvalues
are expected to have, at best, similar uncertainty levels. Thus, without more data, it
is not possible to attribute the lack of agreement to a failure of the EVRA ansatz.
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Figure 2.17: Spectra of first five (a) SPOD, (b) baseline resolvent, and (c) the RANS
eddy-viscosity model resolvent modes at < = 0 for (C ∈ [0.05, 1].

Singular values
We return to the < = 0, (C ∈ [0.05, 1] case to assess the EVRA-RANS 2 = 0.2
model’s effect on the singular values and compare them to the baseline case and
the SPOD eigenvalues. Figure 2.17 provides the spectra of the first five modes for
SPOD (accompanied by a shaded region providing the 95% confidence interval of
the eigenvalues), the baseline resolvent model, and the RANS-EVRA model (using
2 = 0.2) for < = 0. Comparing the resolvent spectra to the SPOD spectra, we
immediately see that the separation between _ (i.e. the ratio between _=/_=+1) and
f2 of either resolvent models does not compare favorably. In fact, the RANS-EVRA
spectrum has increased its energetic separation when compared to the baseline case.

This behavior may be linked to multiple (in this case two for < = 0) distinct
mechanisms represented in the flow, the KH and Orr-mechanisms. As detailed
earlier, the inclusion of an eddy-viscosity model presents a substantial effect on the
Orr modes, significantly reducing the streamwise extent of each mode, while the
KH modes are relatively unchanged. We observe an analogous effect here in Figure
2.17 where the singular values related to the Orr mechanism decrease substantially,
pulling away from the unaffected singular values of the KH mechanism, resulting
in a much larger separation between singular values than is observed between the
SPOD eigenvalues. This sensitivity of Orr modes to an eddy-viscosity was also
observed in Schmidt et al. (2018) at (C = 0.6, < = 0 when adjusting Re) , finding
that the squared singular values of the subdominant Orr modes scaled as Re1.2

) . We
observe the same effect using the RANS eddy-viscosity model, interestingly (and
perhaps unsurprising given the preceding discussions), Figure 2.17 (c) provides
similar values as those reported by Schmidt et al. (2018) at (C = 0.6, < = 0 when
using Re) = 103.
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Figure 2.17 (a) and (c) also show that the forcing amplitudes, _V, are not uniform in
turbulent jets, contrary to a customary assumption used in resolvent analysis where
�β = UI , with U as an arbitrary constant (Morra et al., 2019; Lesshafft et al.,
2019; Hwang and Eckhardt, 2020). Focusing on only the first and second resolvent
and SPOD modes for (C = 0.6 and < = 0, where mode alignments are 95% and
69%, respectively (the optimal-field case increases the latter value to 77% without
appreciably changing the singular value), we may assume that the diagonal compo-
nents of the forcing, _β,1 and _β,2, account for nearly all the energetic contributions
by these two modes. As shown by Equation (2.17), this assumption allows for a
one-to-one comparison between the first two SPOD eigenvalues, resolvent singular
values, and forcing amplitudes (i.e. _β,= = _=f−2

= for = = 1, 2). If the customary
assumption of uniform forcing is applied, �β = UI , then U = _1f

−2
1 = _2f

−2
2 or,

alternatively, _1/_2 = f
2
1 /f

2
2 , and Figure 2.17 shows this cannot be true. Therefore,

unless the SPOD and resolvent spectra are equivalent, we must model or estimate
the non-trivial forcing amplitudes.

The sizeable difference between the singular values reflects the forcing of different
mechanisms at significantly different amplitudes in the flow. Pickering, Rigas,
Nogueira, et al. (2020) showed that there are three distinct spatial regions that lead
to the most efficient amplification of the KH, Orr, and the lift-up mechanisms.
They found that regions localized near the nozzle where perturbations are smaller,
associate with KH-type responses, while regions downstream and near the end
of the potential core where perturbations are significantly larger, support Orr-type
responses. Considering these observations, a logical next step in completing a
resolvent-based turbulence model is to tie the forcing amplitude of different modes
to the turbulence intensities in the respective regions that force them.

2.8 Conclusions
We developed a data-informed optimization that quantitatively tested the extent to
which an eddy-viscosity model improves the alignment (i.e. agreement) between
observed large-scale structures, educed via SPOD, and those computed from re-
solvent analysis. This eddy-viscosity approach acts as a proxy for modeling the
effect of turbulence on large-scale structures, and we found this approach provides
substantial improvements in agreement (i.e. when compared to a baseline case that
used a constant eddy-viscosity model corresponding to a value of Re) = 3×104). By
directly optimizing the eddy viscosity field to achieve the best alignment, we found
alignments between resolvent and SPOD modes as high as 96% or improvements of



46

over ten-fold from the baseline alignment (i.e. 8% to 80%).

Across the frequencies and wavenumbers considered, the addition of an eddy-
viscosity model to the resolvent operator highlighted its effect on the different
amplifications mechanisms in the turbulent jet: Orr-type, KH-type, and lift-up.
Although eddy-viscosity models improved modes related to the KH-type mode, we
found KHmodes to be rather insensitive to the eddy-viscosity field, a result expected
from the inviscid nature of the inflectional KH instability. For resolvent modes
associated with the Orr and lift-up mechanisms, known to arise from nonlinear
interactions, we found significant sensitivity. Resolvent modes computed without
a sufficient eddy-viscosity model were visually unrecognizable from their SPOD
counterpart, while those computed with an eddy-viscosity model aligned to nearly
80%.

The optimal eddy-viscosity field also provided an upper bound for mode agreement,
providing a benchmark to assess three additional eddy-viscosity models. Of these
models, we found that traditional eddy-viscosity models (e.g. RANS based) perform
nearly as well as the optimal eddy-viscosity models in aligning the most energetic
mode. The traditional models even outperformed the optimal model (i.e. optimal
in the first mode) when considering the subdominant modes, giving the greatest
diagonalization of the forcing CSD at < = 0, (C = 0.6 (i.e. ability to model the
effect of nonlinear forcing), leading to a more efficient resolvent basis for describing
turbulent jets.

Finally, we tested themodeling potential of a RANS-inferred EVRA through a sensi-
tivity analysis and observed its performance over frequency, azimuthal wavenumber,
and Mach number. We found the sensitivity of the RANS-based EVRA model’s
calibration constant, 2, to be weak, giving similar agreement for coefficients ranging
over an order of magnitude. We found that the coefficients resulting in similar
agreement fell within a range of values that may have a connection to the Smagorin-
sky coefficient for sub-grid scale modeling of eddy viscosity in LES. Choosing a
frequency-independent RANS-EVRA model (i.e. 2 = 0.2), we tested its perfor-
mance across six azimuthal frequencies and three turbulent jets, spanning subsonic,
transonic, and supersonic regimes. For the first three azimuthal wavenumbers (i.e.
< = 0 − 2), we observed substantially increased alignments for all three turbulent
jets and across Strouhal numbers (C ∈ [0.05, 1]. Overall, these results show that
“classical” eddy-viscosity models (RANS or a mean-flow consistent model) aid in
estimating the impact of the Reynolds stresses for resolvent analysis.
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While the present data-driven analysis points to the efficacy of relatively simple eddy-
viscosity-based models for modeling the effect of nonlinear forcing and providing a
more efficient resolvent basis, there remains a need for refinements to this approach
and careful comparison and consideration of alternative formulations.
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LIFT-UP, KELVIN-HELMHOLTZ, AND ORR MECHANISMS IN
TURBULENT JETS
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Chapter Abstract

Three amplification mechanisms present in turbulent jets, namely lift-up, Kelvin-Helmholtz,
and Orr, are characterized via global resolvent analysis and spectral proper orthogonal de-
composition (SPOD) over a range of Mach numbers. The lift-up mechanism was recently
identified in turbulent jets via local analysis by Nogueira et al. (J. Fluid Mech., vol. 873,
2019, pp. 211–237) at low Strouhal number ((C) and non-zero azimuthal wavenumbers
(<). In these limits, a global SPOD analysis of data from high-fidelity simulations reveals
streamwise vortices and streaks similar to those found in turbulent wall-bounded flows.
These structures are in qualitative agreement with the global resolvent analysis, which
shows that they are a response to upstream forcing of streamwise vorticity near the nozzle
exit. Analysis of mode shapes, component-wise amplitudes, and sensitivity analysis dis-
tinguishes the three mechanisms and the regions of frequency-wavenumber space where
each dominates, finding lift-up to be dominant as (C/< → 0. Finally, SPOD and resolvent
analyses of localized regions show that the lift-up mechanism is present throughout the
jet, with a dominant azimuthal wavenumber inversely proportional to streamwise distance
from the nozzle, with streaks of azimuthal wavenumber exceeding five near the nozzle, and
wavenumbers one and two most energetic far downstream of the potential core.

3.1 Introduction
Coherent structures in turbulence are responsible for the transport of mass, mo-
mentum, and energy, and the radiation of acoustic waves. Early observations of
Mollo-Christensen (1967) and Crow and Champagne (1971) found orderly struc-
ture in turbulent jets and Brown and Roshko (1974) in planar mixing layers. Almost
fifty years later, a full understanding of the underlying mechanisms driving the gen-
eration and sustenance of coherent structures remains elusive, yet their connection
to longstanding engineering problems such as jet acoustics (Jordan and Colonius,
2013) and drag in wall-bounded flows (Jiménez, 2018) has become increasingly
clear.

The interpretation and modeling of coherent structures in turbulence have his-
torically taken the form of instabilities of (typically steady) basic flows. In jet
turbulence, Crighton and Gaster (1976) hypothesized that coherent structures could
be described as linear instabilities of the mean flow via a modal analysis. Since
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that time, researchers have computed modal and non-modal mechanisms in jets
with varying degrees of generality. Earlier work focused on parabolized stability
equations (PSE), and Gudmundsson and Colonius (2011) showed that PSE solu-
tions for an experimentally measured jet mean flow yielded good predictions for
the dominant frequency/azimuthal mode structures educed from a near-field caged
microphone array. However, in fully global studies, Garnaud et al. (2013a) yield a
stable spectrum (for jets that are not too highly heated), and the characterization of
instability mechanisms required transient (non-modal) growth. Resolvent analysis,
by contrast, characterizes linear amplification of disturbances in the frequency do-
main, and is therefore easier to relate experimental mechanisms in both transitional
and turbulent flows. McKeon and Sharma (2010) proposed a resolvent interpre-
tation for the turbulent case, where nonlinear interactions are regarded as forcing
terms to a linearized operator that amplifies them according to the turbulent mean
flow. Resolvent analysis of a variety of jet mean flows has been reported in the
literature (Garnaud et al., 2013b; Jeun, Nichols, and Jovanović, 2016; Semeraro,
Lesshafft, et al., 2016; Schmidt et al., 2018; Lesshafft et al., 2019) and has shown
two essentially different linear amplification mechanisms, one associated with the
traditional, modal (parallel-flow) Kelvin-Helmholtz (KH) instability and the other
as an Orr-type mechanism, also identified through PSE by Tissot, Lajús Jr, et al.
(2017).

The KH mechanism has long been invoked to describe coherent structures in both
transitional and turbulent planar shear layers and jets. Strictly speaking, the mech-
anism itself is not defined outside of the context of parallel/quasi-parallel laminar
shear layers, where, in the spatial stability theory, KH is an unstable modal solution
with an associated spatial growth rate. For jets, the solution is typically a convective
instability, and, under spreading of the flow, an initially growing wave (at a fixed
frequency) will eventually become neutral and decay (Crighton and Gaster, 1976).
For the axisymmetric azimuthal wavenumber, < = 0, the resulting wavepacket
has a nearly constant phase speed 2?ℎ ≈ 0.8 (for Strouhal number, (C ∈ [0.3, 1])
(Michalke, 1984; Malik and Chang, 1997; Schmidt et al., 2018), a phase change
in streamwise velocity over the critical layer (Cavalieri, Rodríguez, et al., 2013),
and is coincident with what has been termed the preferred mode of the jet (most
amplified mode to external forcing) between Strouhal numbers ≈ 0.3 − 1 (Morris,
1976; Ho and Huerre, 1984; Tam and Hu, 1989; Gudmundsson and Colonius, 2011;
Garnaud et al., 2013b; Rodríguez et al., 2015; Semeraro, Lesshafft, et al., 2016;
Schmidt et al., 2018; Lesshafft et al., 2019). According to the parallel theory and its
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quasi-parallel extensions, the mode is unstable at low frequencies but with a growth
rate that goes to zero faster than the frequency. In more recent global stability
(Nichols and Lele, 2011) and resolvent analyses (Garnaud et al., 2013b; Semeraro,
Lesshafft, et al., 2016; Jeun, Nichols, and Jovanović, 2016; Schmidt et al., 2018;
Lesshafft et al., 2019), the optimal resolvent response has been related to the KH
mechanism from (C ∈ [0.3, 1], possessing similar characteristics described above
through quasi-parallel analysis. Each of these resolvent studies found the KH re-
sponse, triggered by optimal forcing localized to the initial shear layer (i.e. the
lip line (A/� = 0.5) at the nozzle exit), to exhibit high gain, as well as significant
gain separation between the optimal and sub-optimal modes, suggesting an intrinsic
mechanism reminiscent of a parallel-flow modal instability. At low frequencies,
the gain separation diminished, and Schmidt et al. (2018) explicitly tracked the KH
mode for (C < 0.3, finding the KH mode fell into the sub-optimal gains of the re-
solvent spectrum and was overtaken by another family of resolvent response modes
governed by the Orr mechanism.

What we term the Orr mechanism, by contrast with KH, is, in the context of the
response of jets, a relatively recent observation based on either non-modal parallel-
flow or global analysis (Garnaud et al., 2013b; Semeraro, Lesshafft, et al., 2016;
Tissot, Lajús Jr, et al., 2017; Tissot, Zhang, et al., 2017; Schmidt et al., 2018;
Lesshafft et al., 2019). The characteristics of the Orr mechanism are similar to what
has been observed in non-modal analyses of wall-bounded flows (Farrell, 1988;
Dergham, Sipp, and Robinet, 2013; Sipp and Marquet, 2013; Jiménez, 2018). The
Orr wavepacket has a phase speed of 2?ℎ ≈ 0.4 (Schmidt et al., 2018) (at low
frequencies, (C < 0.3) and is forced (or most efficiently initialized) by structures
oriented at 45 degrees against the direction of mean shear, while the response
structure that appears downstream is oriented at 45 degrees along the direction of
mean shear. Structures are thus tilted by the mean shear, with algebraic amplitude
growth of velocity fluctuations in this process (Jiménez, 2013). Schmidt et al. (2018)
showed that modes with these characteristics were the dominant global resolvent
modes in the jet at high frequencies (i.e. (C > 2), for all <. For < = 0, at low
frequencies (i.e. (C < 0.3 and mentioned above) the Orr mechanism appears again
as the dominant mode as the gain associated with the KH mode becomes small and
falls below the gains of Orr responses.

However, these previous global resolvent computations neglected the lowest-frequency
region of the spectrum, owing largely to computational difficulties, i.e. the large
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spatial domains required. Recently, Nogueira et al. (2019) presented evidence, both
through spectral proper orthogonal decomposition (SPOD) of particle image ve-
locimetry data and a locally parallel resolvent analysis, that a third and uniquely
distinct mechanism is at play in the low-frequency region of the spectrum, namely
the lift-up mechanism.

The lift-up mechanism (Ellingsen and Palm, 1975) and the associated coherent
structures, streaks, have long been understood as an important mechanism in wall-
bounded flows (see review by Brandt (2014) and references therein). Parallel to
the history of mechanism identification in jet flows, the lift-up mechanism and its
interplaywith the Tollmien-Schlichting andOrrmechanisms has been systematically
described, first through observations (Kline et al., 1967; Klebanoff, 1971; Kim,
Kline, and Reynolds, 1971), then local analyses (Moffatt, 1965; Ellingsen and Palm,
1975; Landahl, 1980), followed by transient growth (Butler and Farrell, 1992; Farrell
and Ioannou, 1993), and most recently resolvent analysis (Hwang and Cossu, 2010a;
Marant and Cossu, 2018; Abreu et al., 2019). The salient properties of the lift-up
mechanism include streamwise vortices (rolls with streamwise vorticity) that lift
up low-speed fluid from the wall (and push high-speed fluid toward the wall) until
viscous dissipation becomes important. The associated optimal forcing takes the
form of streamwise rolls (cross-stream forcing components) which result in growth
of both streamwise response rolls and the streamwise velocity component (streaks).
Although research surrounding streaks is most closely tied with wall-bounded flows,
it is known that thewall is not necessary for the lift-upmechanism to persist (Jiménez
and Pinelli, 1999; Mizuno and Jiménez, 2013; Chantry, Tuckerman, and Barkley,
2016).

Around the same time that the identification and recognition of the lift-upmechanism
was being studied in wall-bounded flows, so too were the implications of streamwise
vortices in free shear flows, in particular, the plane free shear layer. The earliest
theoretical evidence of streaks in the plane free shear layer likely belongs to Benney
and Lin (1960) and Benney (1961), who studied secondary instabilities of the flow
in the form of weakly nonlinear interactions between two-dimensional and three-
dimensional waves. They found streamwise vortices to be responsible for alternate
steepening and flattening of the velocity profile, associated with the presence of
streaks. Miksad (1972) first observed this behavior, followed by the observations
of Konrad (1976), Breidenthal (1978), Bernal, Breidenthal, et al. (1979), Bernal
(1981), Breidenthal (1981), and Bernal and Roshko (1986), along with numerical
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visualizations of Jimenez, Cogollos, and Bernal (1985), Metcalfe et al. (1987), and
Rogers and Moser (1992).

Advancing the original theoretical work of Benney and Lin, Widnall, Bliss, and
Tsai (1974) and Pierrehumbert and Widnall (1982) made explicit the connection of
streamwise vortices and streaks through secondary instability of the plane free shear
layer. Introducing KH-like vortices into the flow and increasing their amplitude
produced three-dimensional modes that became unstable, leading to streamwise
vortex generation along with streaks. Further three-dimensional, secondary-flow
theory came via the approximate dynamical models of Lin (1981), Lin and Corcos
(1984), and Neu (1984) who assumed generation of streamwise vorticity occurs in
the braid regions by the strain field of two adjacent spanwise structures, resulting
in streamwise streaks. A comprehensive review of the early works on secondary
instability and streaks in plane shear flow can be found in Ho and Huerre (1984).

Although the plane shear layer is a general case of the free shear layer, explicit
connections of jet flow to streamwise vortices and streaks did not receive such de-
tailed attention during the same time period. Bradshaw, Ferriss, and Johnson (1964)
identified elongated structures, albeit in the transitional region. Their visualizations
provided evidence of “mixing jet” structures present in the flow, inclined in the
G − A plane, and forced through radial/azimuthal components leading to streamwise
momentum transfer. They also postulated, similar to boundary-layer transition, that
the highly energetic structures were essential for breakdown to turbulence. Later
works by Becker and Massaro (1968), Browand and Laufer (1975), Yule (1978),
Dimotakis, Miake-Lye, and Papantoniou (1983), and Agüí and Hesselink (1988) all
observed streamwise vortices in jet flow, but questions remained, where does the
instability originate and by what means does it grow?

Two works, one numerical (Martin andMeiburg, 1991) and one experimental (Liep-
mann andGharib, 1992), sought to address the above questions. Martin andMeiburg
(1991) showed how the strain field and radial shear were instrumental in the cre-
ation and evolution of streamwise vortices in the braid region. While Liepmann and
Gharib (1992), through the use of digital image particle velocimetry on a transitional
round jet, identified streamwise vortices and again connected them to highly strained
regions between vortex rings (i.e. the braid region), finding that the streamwise vor-
tices have a fundamental effect on the dynamics and statistical properties of the flow.
Of particular note, they also found strong streamwise vortices persisted in the fully
turbulent region of their flow, even when the energy of azimuthal rollers, necessary
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for further vortex generation, diminished. Regardless of this final observation, both
studies supported the stability theory of Pierrehumbert and Widnall (1982) and the
collapse of the braid region into vortices by Lin and Corcos (1984) and Neu (1984),
however, they each brought forth questions regarding additional tertiary instabilities
resulting from their observations, increasing analysis complexity. The resolvent
framework presented here seeks to eliminate the need for continued secondary and
tertiary stability analyses.

In more recent work, Citriniti and George (2000) identified streamwise vortices
using a 138 hot-wire array located 3 diameters downstream of a turbulent round
jet to identify, through SPOD, structures. Their structures contained both stream-
wise vorticity (i.e. rolls) and streamwise velocity (i.e. streaks), with peak energies
at < = 4. Jung, Gamard, and George (2004), expanding the above experiment,
found that the most energetic, non-zero azimuthal wavenumber scaled inversely to
downstream location. Other experiments investigating streamwise vortices in high
Reynolds number jets, exiting from both transitional and turbulent boundary layers,
found that interactions between strong streamwise vortices and weak axisymmetric
vortices may generate further streamwise vortices (Davoust, Jacquin, and Leclaire,
2012; Kantharaju et al., 2020). As the importance of streamwise vortices to the
overall dynamics became increasing apparent, various techniques such as chevrons
(Bridges, Wernet, and Brown, 2003; Saiyed, Mikkelsen, and Bridges, 2003; Bridges
and Brown, 2004; Violato and Scarano, 2011) and microjets (Arakeri et al., 2003;
Greska et al., 2005; Alkislar, Krothapalli, and Butler, 2007; Yang et al., 2016) were
implemented to impact the near-field turbulence for far-field noise reduction. In
these cases, the addition of chevrons and microjets directly imprint strong stream-
wise vortices and velocity variations upon the mean of each flow case. However,
not all configurations led to reductions in noise, motivating further theoretical un-
derstanding of streamwise vortices in jets.

Only recent work on non-modal instability provided direct theoretical evidence of
the lift-up mechanism in round jets. Boronin, Healey, and Sazhin (2013) performed
local transient growth analyses on liquid, laminar jets of Reynolds number 1,000
and found lift-up to be responsible for optimal growth. Jimenez-Gonzalez and
Brancher (2017) extended this approach considering the influence of jet aspect ratio,
Reynolds number, and azimuthal wavenumber on lift-up. Similar results were found
by Garnaud et al. (2013a) using a global transient analysis, for both incompressible
laminar and turbulent jets, however, they noted there was no firm evidence of lift-up



54

effects at the present time and did not investigate the zero-frequency limit in their
companion resolvent study (Garnaud et al., 2013b).

Although it is clear that lift-up is present in laminar, transitional, and, in a more lim-
ited sense, turbulent jets at high Reynolds number, a direct quantitative comparison
between globally observed and computed structures is lacking. Resolvent analysis
and SPOD provide a statistical connection between structures observed in turbulent
flow to those computed through linear-amplification theory (Towne, Schmidt, and
Colonius, 2018).

In this paper, we use these tools to study characteristics of the lift-up mechanism,
expanding upon the work of Nogueira et al. (2019). The jets we consider are fully
turbulent at high Reynolds numbers and are issued from nozzles consisting of a fully
turbulent boundary layer. We demonstrate the presence and energetic importance
of the lift-up mechanism over subsonic to supersonic regimes, and characterize,
as a function of frequency and azimuthal mode number, the interplay between
the (now three) mechanisms (KH, Orr, lift-up). We show that previously described
experimental (Liepmann, 1991; Paschereit et al., 1992; Liepmann andGharib, 1992;
Arnette, Samimy, and Elliott, 1993; Citriniti and George, 2000; Jung, Gamard, and
George, 2004; Alkislar, Krothapalli, and Butler, 2007; Cavalieri, Rodríguez, et al.,
2013) and numerical (Martin and Meiburg, 1991; Caraballo et al., 2003; Freund
and Colonius, 2009) observations result from the lift-up mechanism, yet do not
reject the potential origin of streamwise vortices through secondary instabilities
of the flow (Widnall, Bliss, and Tsai, 1974; Pierrehumbert and Widnall, 1982;
Lin and Corcos, 1984; Neu, 1984). In this work, resolvent analysis provides the
key statistical link between response modes observed in the SPOD spectrum and
their underlying resolvent forcing modes, shedding light on the most active linear-
amplification mechanisms throughout the frequency-wavenumber space.

The chapter is organized as follows. In § 3.2 we describe the resolvent and SPOD
methodology and discuss the large eddy simulation (LES) databases used to educe
coherent structures. In § 3.3 we introduce a collection of snapshots from the LES
of a Mach 0.4 jet showing streaky characteristics. In § 3.3 we present the dominant
energies and gains computed using SPOD and resolvent analysis respectively. In
§ 3.3 SPOD results approaching Strouhal number (C → 0 and resolvent analysis
at (C = 0 are shown, identifying streaks and the direct presence of the lift-up
mechanism in turbulent jets. We then compare SPOD and resolvent modes in § 3.4
at non-zero azimuthal wavenumbers and frequencies from (C = 0.6 to (C → 0 and



55

case " 9 '4 9
?0
?∞

)0
)∞

=cells ΔC0∞/� Δ(C

subsonic 0.4 4.5 × 105 1.117 1.03 15.9 × 106 0.2 0.049
transonic 0.9 1.01 × 106 1.7 1.15 15.9 × 106 0.2 0.022
supersonic 1.5 1.76 × 106 3.67 1.45 31 × 106 0.1 0.026

Table 3.1: Parameters, sampling rate, and frequency resolution for the LES.

present a sensitivity analysis delineating the various mechanisms pertaining to KH,
Orr, and lift-up, while also suggesting a mechanism map of the most amplified
response mechanism throughout the frequency-wavenumber space of turbulent jets.
We then conclude the chapter in § 3.5 addressing the presence of streaks throughout
the domain, both near and far from the nozzle.

3.2 Methods
The LES database, resolvent analysis and SPOD were described in Schmidt et al.
(2018) and Towne, Schmidt, and Colonius (2018). For brevity, we recall the main
details here.

Large Eddy Simulation database
The LES databases, including subsonic (Mach 0.4), transonic (Mach 0.9), and
supersonic (Mach 1.5) cases, were computed using the flow solver Charles; details
on the numerical method, meshing, and subgrid models can be found in Brès,
Ham, et al. (2017). The simulations were validated with experiments conducted
at PPRIME Institute, Poitiers, France for the Mach 0.4 and 0.9 jets (Brès, Jordan,
et al., 2018). A summary of parameters for the three jets considered is provided in
Table 3.1. These include the Reynolds number based on diameter '4 9 = d 9* 9�/` 9
(where subscript 9 indicates the value at the center of the jet, d is density, ` is
viscosity) and the Mach number, " 9 = * 9/0 9 , where 0 9 is the speed of sound at the
nozzle exit. The simulated" 9 = 0.4 jet corresponds to the experiments in Cavalieri,
Rodríguez, et al. (2013), Jaunet, Jordan, and Cavalieri (2017), and Nogueira et al.
(2019) with the same nozzle geometry and similar boundary-layer properties at the
nozzle exit. Throughout the thesis, reported results are non-dimensionalized by the
mean jet velocity * 9 and jet diameter �; pressure is made non-dimensional using
d 9*

2
9
. Frequencies are reported in Strouhal number, (C = 5 �/* 9 , where 5 is the

frequency.

Each database consists of 10,000 snapshots separated by ΔC0∞/�, where 0∞ is
the ambient speed of sound, and interpolated onto a structured cylindrical grid
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Figure 3.1: LES snapshot of fluctuating streamwise velocity in a plane through the
" 9 = 0.4 jet centerline. The lines show the areas of interest plotted in Figure 3.3.

G, A, \ ∈ [0, 30] × [0, 6] × [0, 2c], where G, A, \ are streamwise, radial, and azimuthal
coordinates, respectively. Variables are reported by the vector

q = [d, DG , DA , D\ , )]) , (3.1)

where DG , DA , D\ are the three velocity components, ) is temperature, and a standard
Reynolds decomposition separates the vector into mean, q̄, and fluctuating, q′,
components

q(G, A, \, C) = q̄(G, A) + q′(G, A, \, C). (3.2)

Figure 3.1 displays one snapshot of the streamwise velocity component in a plane
through the " 9 = 0.4 jet centerline.

Spectral Proper Orthogonal Decomposition
SPOD is implemented to determine a set of orthogonal space-time correlated modes
that optimally describe the turbulent flow statistics (Towne, Schmidt, and Colonius,
2018). To perform SPOD we decompose each LES database, Q, where columns
of Q are temporal snapshots of the state vector q, in the azimuthal and temporal
dimensions via discrete Fourier transforms to give, Q<,l. The azimuthal decom-
position is performed over 128 azimuthal grid points, allowing for valid trans-
forms of up to < = 64, however we only report results using up to < ≈ 30 with
most of the analysis at low azimuthal wavenumbers, < ≤ 5. The temporal trans-
forms require the dataset to be segmented into sequences Q = [q (1)q (2) ...q (=freq)]
where each segment (or block) contains =freq instantaneous snapshots (including
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overlap), with a periodic Hanning window employed over each block to prevent
spectral leakage. Applying the temporal and azimuthal Fourier transforms gives
Q̂(;)<,l: = [q̂

(;)
<,l1 q̂

(;)
<,l2 ...q̂

;
<,l=freq

], where q̂;<,l: is the ;-th realization of the trans-
form at the :-th frequency. The cross-spectral density tensor at a given frequency
l: = 2c(C and azimuthal wavenumber < is then given by

S<,l: = Q̂<,l:Q̂
∗
<,l:

(3.3)

and the SPOD eigenvalue problem presented by Lumley (1967) and Lumley (1970)
can be solved

S<,l:W	<,l: = 	<,l:�<,l: . (3.4)

The SPOD modes are represented by the columns of 	<,l: and are ranked by
the diagonal matrix of eigenvalues �<,l: = diag(_1, _2, ..., _# ). The modes are
orthonormal in the norm W , representing the compressible energy norm of Chu
(1965)

〈q1, q2〉� =
∫ ∫ ∫

q∗1diag
(

)̄

Wd̄"2 , d̄, d̄, d̄,
d̄

W(W − 1))̄"2

)
q2A3A3G3\ (3.5)

and satisfy 	∗<,l:W	<,l: = I .

Given that SPOD is a discrete method for educing turbulent coherent structures,
challenges persist for approaching the limit of (C → 0. We must strike a balance
between snapshots per block (frequency resolution) and the number of blocks (con-
vergence) when performing SPOD.When considering (C ∈ [0.2, 1] for the" 9 = 0.4
jet, Schmidt et al. (2018) used block sizes of 256 snapshots with 50 % overlap (re-
sulting in 78 blocks), and we use these same parameters in § 3.3. However, to
uncover stationary-in-time structures such as streaks, increases in frequency resolu-
tion, and therefore block sizes, are necessary in the limit of (C → 0. For the global
SPOD analysis presented, and after experimentation with block sizes (256, 512,
1024, 2048) and overlap (50%, 75%), we use 1024 snapshots with 75% overlap (36
blocks) to attain the required frequency resolution, yet maintain convergence with
sufficient blocks as (C → 0 in § 3.3. We also note that the use of 2048 snapshots
per block produced almost identical SPOD modes as using 1024 snapshots, albeit
with a greater uncertainty as we reduced the block ensemble to 16 blocks.

Resolvent analysis
For the round, statistically stationary, turbulent jets we consider, the compressible
Navier–Stokes, energy, and continuity equations are linearized through a standard
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Figure 3.2: Resolvent eddy-viscosity field using the turbulent kinetic energy model,
`) = d̄2:

1/2;<, with 2 = 1. The black lines denote the region of > 10% maximum
TKE which defines the length scale, ;<.

Reynolds decomposition, and Fourier transformed both temporally and azimuthally
to the compact expression,

(8lI − A<)q<,l = f<,l. (3.6)

Here, A< is the discretized linear operator considering the mean field as the base
flow, q = [d′, D′G , D′A , D′\ , ) ′] is the state vector, and f constitutes the forcing in each
variable.

The influence of viscosity on the linear operator, A<, was previously (Schmidt et
al., 2018) based on a spatially uniform Reynolds number using an altered molecular
viscosity. However, recent resolvent analyses for turbulent jets (Pickering, Rigas,
Sipp, et al., 2019) and channel flows (Morra et al., 2019), have shown substantial im-
provement in SPOD-resolvent correspondence by using a mean-flow eddy-viscosity
model on the fluctuations. We proceed here by including an eddy-viscosity model
based upon the turbulent kinetic energy (TKE) suggested for turbulent jets by Picker-
ing, Rigas, Sipp, et al. (2019). This model was primarily chosen due to its simplicity
and availability of the corresponding quantities from the LES database. The model
takes the form

`) = d̄2:
1/2;<, (3.7)

where 2 is a scaling constant, : is the mean-flow turbulent kinetic energy, and ;< is a
chosen length scale representative of the mean shear layer thickness; ;< is chosen as
the width of the shear layer where the turbulent kinetic energy is more than 10% of
its maximum value at each streamwise location, and the scaling constant 2 = 0.0065
is used considering the favourable SPOD-resolvent alignments previously shown for
< = 0 and (C = 0.05 − 1. The eddy-viscosity field implemented in this analysis is
shown in Figure 3.2, note that the field is shown when 2 = 1.
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With the inclusion of an eddy-viscosity model, the forward operator becomes
(8lI − A< − A<,) (`) )), where A<,) (`) ) only possesses terms that include `)
(equations forA<,) (`) ) are included in Pickering, Rigas, Sipp, et al. (2019)). The
streamwise plane is discretized using fourth-order finite difference operators satis-
fying a summation by parts rule developed by Mattsson and Nordström (2004), the
polar singularity is treated as in Mohseni and Colonius (2000), and non-reflecting
boundary conditions are implemented at the domain boundaries.

We can rewrite Equation 3.6 by defining the resolvent operator, Rl,< = (8lI −
A< −A<,) (`) ))−1,

q<,l = R<,lf<,l, (3.8)

and introducing the compressible energy norm (Chu, 1965) via the matrix W to
the forcing and response, where W = W 5 = W@, gives the weighted resolvent
operator, R̂<,l,

R̂<,l = ]1/2
@ R<,l]

−1/2
5

. (3.9)

Taking the singular value decomposition of the weighted resolvent operator gives

R̂<,l = Û<,l�V̂
∗
<,l (3.10)

where the optimal response and forcing modes are contained in the columns of
U<,l = W −1/2

H Û<,l, with U<,l = [u1
<,l,u

2
<,l, ...,u

#
<,l], V<,l = W −1/2

5
V̂<,l,

with V<,l = [v1
<,l, v

2
<,l, ..., v

#
<,l], respectively, while � = diag(f1, f2, ..., f# ) are

the ranked gains.

To avoid ambiguity in referring to computed SPOD and resolvent modes, the fol-
lowing notation is used in the remainder of the thesis: ψ= represents the =-th most
energetic SPOD mode, while v= and u= denote the resolvent forcing and response,
respectively, that provide the =-th largest linear-amplification gain between v= and
u=. In this paper, we only consider the optimal, or dominant, modes such that = is
unity. Additionally, when referring to specific components of each mode, such as
streamwise velocity, the notation ψ1 : DG is used. Finally, for all computed modes
subscripts <, l are dropped, but referenced when necessary in the text.

Resolvent-based sensitivity analysis
A structural sensitivity analysis (Qadri and Schmid, 2017) is applied to reveal
regions of the flow where small perturbations to the operator have the largest effect
on the resolvent gain. The component-wise sensitivity tensor is defined as the
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component-wise product of the forcing and response modes,

(8, 9 = f
2'4((v1 : 8) ◦ (u1 : 9)∗), (3.11)

where subscripts 8, 9 denote the 8-th or 9-th component of the forcing or response,
and ◦ denotes component-wise multiplication, giving the spatial sensitivity for each
8, 9 forcing-response combination to the gain, f. The sensitivity is calculated for
the three forcing and response velocities of the momentum equation, presenting a
3 × 3 sensitivity tensor.

3.3 Lift-up mechanism & streaks
The lift-up mechanism, and the associated streaks, were first described by Moffatt
(1965) and Ellingsen and Palm (1975), where low-energy vortices “lift-up” stream-
wise momentum of the basic flow and generate high-energy streaks. This simple
description continues to provide an intuitive and accurate description in line with
modern analyses. Here, we extend findings on non-modal growth of streaks in jets
(Boronin, Healey, and Sazhin, 2013; Garnaud et al., 2013a; Jimenez-Gonzalez and
Brancher, 2017; Nogueira et al., 2019) and compare our findings to wall-bounded
optimal forcing studies of Hwang and Cossu (2010a) andMonokrousos et al. (2010),
as well as the transient growth analysis of planar mixing layers by Arratia, Caulfield,
and Chomaz (2013).

There are three salient characteristics that we use to identify the lift-up mechanism
in the SPOD and resolvent results. First, the optimal forcing structures take the form
of cross-stream vortices while the response assumes a highly amplified streamwise
velocity structure. Second, the structures are elongated in the streamwise coordinate
and are most amplified as their wavelength lengthens (i.e. represented in wall-
bounded flows as a streamwise wavenumber of 0, and in the jet as (C = 0). Third,
streaks are azimuthally non-uniform (spanwise non-uniform in planar flows), i.e.
they do not occur at < = 0.

For the remainder of this chapter, we report results for the " 9 = 0.4 turbulent jet.
Similar analyses are provided for both the " 9 = 0.9, 1.5 jets in Appendix B.1.

LES visualization
Previous SPOD and resolvent analyses of turbulent jets (Schmidt et al., 2018)
showed that the energy of the most amplified mode increases for non-zero azimuthal
wavenumber as (C → 0. Considering significant energy is found at low frequencies,
we expect to find elongated, streak-like structures to be visually present in the LES
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Figure 3.3: Instantaneous LES snapshots of streamwise fluctuating velocity, D′G ,
taken at radial locations A/� = 0.2, 0.55, 1, 2.5 (a-d) with the y-axis representing
the unwrapped surface A\/�. Only 2/5 of the A/� = 2.5 surface is shown in the
last plot.

snapshots. Instantaneous snapshots of fluctuating streamwise velocity, D′G , are shown
on four unwrapped cylindrical surfaces at A/� = 0.2, 0.55, 1, and 2.5 (denoted in
Figure 3.1) in Figure 3.3. The Figures are plotted with the circumferential location
of the unwrapped surface, A\/�, as the y-axis to maintain the physical aspect ratio
of the data. Note that the plots are therefore increasingly zoomed into the near
nozzle region as the radial position is decreased.

These instantaneous visualizations bear a resemblance to streaky structures found
in plane shear flows, wall-bounded flows, and most recently the visualization of the
present flow by Nogueira et al. (2019) invoking Taylor’s hypothesis. We see elon-
gated structures at each radial location taking forms analogous to Konrad (1976) and
Bernal and Roshko (1986) in plane shear flow, turbulent boundary layers (Swearin-
gen and Blackwelder, 1987; Hutchins and Marusic, 2007; Eitel-Amor, Örlü, and
Schlatter, 2014), channel flow (Monty et al., 2007), and pipe flow (Hellström, Sinha,
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and Smits, 2011). The Figures also show, more subtly, the presence of KH rollers.
Beginning with radial surface A/� = 0.2 in Figure 3.3 (a) we attain a viewpoint from
within the potential core, showing both KH rollers and streaky structures. From
G/� = [3, 6] structures appear to have a dominant A\/� dimension and are likely
to be associated with KH < = 0, 1 instabilities (i.e. KH rollers and non-streaky)
extending throughout the potential core. However, at G/� ≈ 6, where the poten-
tial core ends, the turbulent kinetic energy increases and streamwise-elongated (i.e.
G/� dominated) structures begin to appear; they become more pronounced further
downstream. For the radial surface A/� = 0.55 (b), we see streaky structures of
smaller scale close to the nozzle and larger scale further downstream. These are
similar to the structures visualized by Nogueira et al. (2019) at this radial location.
The structures also meander as they propagate downstream, a quality also observed
in turbulent boundary-layer flows by Hutchins and Marusic (2007). Comparable
behavior is seen for both A/� = 1 (c) and 2.5 (d).

SPOD and resolvent analysis
SPOD and resolvent analyses were performed over a range of frequencies and az-
imuthal wavenumbers. Figure 3.4 (a) shows the SPOD (�(%$�

<,(C
≡ _<,(C) energies

and (b) resolvent (�A4B>;E4=C
<,(C

≡ f2
<,(C
) amplifications of the leading mode. In Figure

3.4 (c,d), for SPOD and resolvent respectively, we perform a supplementary step
to highlight the relative contribution of each azimuthal wavenumber at a particular
frequency. The data presented in (a,b) are normalized at each frequency with the
sum of energy over all azimuthal wavenumbers (�<,(C/

∑
< �<,(C × 100) and plotted

in the (C −< plane. We note that the gains have been normalized in the bottom row
(c,d) as a means of visualizing the data, as it is otherwise difficult to identify behav-
ior occurring at different frequencies as the gain drops off rapidly with increasing
frequency. Both plots in Figure 3.4 (c,d) highlight the dominant wavenumbers at
each frequency and facilitate the identification of different mechanisms. The con-
tour maps (c,d) are interpolated for non-integer wavenumbers despite their discrete
nature in azimuthal wavenumber, <. This representation was chosen as we found it
easier to visually interpret the trends, and tomore readily compare them to spanwise-
streamwise wavenumber contours familiar to boundary-layer (Monokrousos et al.,
2010) or plane shear (Arratia, Caulfield, and Chomaz, 2013) flows where wavenum-
bers are continuous. For reference, the semi-discrete representation of Figure 3.4 is
provided in Appendix B.2.

There is a qualitative agreement between the SPOD energy and resolvent gain.
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Figure 3.4: Energy of the most amplified mode from SPOD (left) and resolvent
(right) analyses. The top row displays the energies (a) and gains (b) for the first
six azimuthal wavenumbers. The bottom row (c,d) recasts the above plots (a,b) as
a percentage of the sum of energy at each azimuthal wavenumber with contours
ranging from 0-40%.

Here, we focus on Figure 3.4 (c,d) and note three regions in (C − < space: i)
The energetic region near (C = 0.6 at low azimuthal wavenumbers (particularly
< = 0) is associated with the KH mechanism (Garnaud et al., 2013b; Semeraro,
Lesshafft, et al., 2016; Schmidt et al., 2018; Lesshafft et al., 2019); ii) at low
frequencies, meaning (C → 0, and < = 0 the dominant mode switches from the
KH to the Orr mechanism for (C < 0.3 (Schmidt et al., 2018) as the growth of
the KH mechanism diminishes; iii) at low frequencies and non-zero azimuthal
wavenumbers (mainly < = 1 and < = 2), a second energetic region is observed.
This region comprises the lift-up mechanism that is described more fully in what
follows. These frequency-wavenumber contour plots present trends similar to those
obtained for laminar plane shear (Arratia, Caulfield, and Chomaz, 2013) and laminar
boundary layers (Monokrousos et al., 2010), where the lift-upmechanism dominates
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Figure 3.5: Streaks computed via SPOD and resolvent analyses for < = 1 and 3.
(a) Most energetic SPOD mode at (C → 0 for < = 1 (left) and < = 3 (right).
Isosurfaces of streamwise velocity (ψ1 : DG , red, blue) and streamwise vorticity
(ψ1 : lG , yellow, green), both at ±25% of their maximum value. (b) Global
resolvent forcing and response for < = 1 (left) and < = 3, (right) at (C = 0. The
streamwise forcing vorticity, v1 : lG is shown in magenta-cyan with isosurfaces
±0.05‖v1 : lG ‖∞ for < = 1 and ±0.15‖v1 : lG ‖∞ for < = 3. Streamwise response
vorticity, u1 : lG , is shown in yellow-green with isosurfaces ±0.5‖u1 : lG ‖∞,
and streamwise response velocity, u1 : DG , is shown in red-blue with isosurfaces
±0.25‖u1 : DG ‖∞.

as streamwise wavenumbers approach 0 (i.e. streamwise uniform), or as frequency
approaches zero for jet flows as documented by local analyses in laminar (Boronin,
Healey, and Sazhin, 2013; Jimenez-Gonzalez and Brancher, 2017) and turbulent
jets (Nogueira et al., 2019). For non-zero azimuthal wavenumbers, where the lift-up
mechanism may be permitted due to its three-dimensional characteristics, < = 1
provides the largest energy across all frequencies, save < = 2 at (C ≈ 0, followed by
a gradual reduction for higher azimuthal wavenumbers.

Global characteristics of streaks
The SPOD modes for (C → 0 are shown in Figure 3.5. The streaks are visualized
in physical space by inverse (azimuthal) Fourier transforming the SPOD mode for
a given azimuthal wavenumber. For < = 1, a well-defined streak (ψ1 : DG , red-blue
isosurfaces) is observed throughout the domain starting at approximately the end of
the potential core. In the < = 3 plot, streaks are seen upstream and downstream
of the potential core, however, at approximately G/� = [15, 20], the streaks are
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less dominant and appear to slightly rotate. The slight rotation is likely an artefact
of imperfect SPOD convergence at (C → 0, as approaching zero frequency still
includes small, but non-zero, frequencies. Interestingly, the slight rotation of these
modes is rather similar to energetic POD modes found by Freund and Colonius
(2009).

Further evidence that these structures are due to the lift-up mechanism is shown by
the yellow-green isosurfaces of streamwise vorticity,ψ1 : lG , included in Figure 3.5.
The presence of streamwise vorticity, or rolls, and their particular location, situated
precisely between positive and negative streamwise velocity contours, is indicative
of the lift-up mechanism. The observation of such streamwise vortices in jets
has previously been reported by a number of authors, including Bradshaw, Ferriss,
and Johnson (1964), Liepmann (1991), Martin andMeiburg (1991), Paschereit et al.
(1992), Liepmann andGharib (1992), Arnette, Samimy, and Elliott (1993), Alkislar,
Krothapalli, and Butler (2007), Citriniti and George (2000), and Jung, Gamard, and
George (2004), and Caraballo et al. (2003), among others, each noting the significant
impact these vortices imposed upon the mean flow and the accompanying streaks.

Performing resolvent analysis for < = 1, 3 at (C = 0 provides a detailed understand-
ing of the forcing mechanisms which give rise to the observed behavior of the SPOD
modes. In Figure 3.5 (b) we see the canonical lift-up progression. The optimal forc-
ing acts on the cross-stream components upstream at the nozzle, with associated
streamwise vorticity v1 : lG (magenta-cyan isosurfaces), in order to optimally gen-
erate rolls, u1 : lG . The rolls, in turn, give rise to streamwise velocity responses,
u1 : DG , i.e. streaks. This connection, between these two response structures, has
generally been interpreted as lift-up in jets, while the lift-up mechanism we describe
refers to the input-output nature of both optimal forcing and response. Further,
the responses in both streamwise vorticity and velocity shown by the SPOD modes
in Figure 3.5 (a) agree quite well with the resolvent findings for both azimuthal
wavenumbers.

Although the three-dimensional (3-D) representation of Figure 3.5 (b) presentsmany
of the salient characteristics of the lift-up mechanism, a 2-D cut at G/� = 5 shown
in Figure 3.6 highlights the radial and azimuthal velocity components of forcing
and response rolls with respect to streaks. In Figure 3.6 (a) the forcing velocity
vectors show the lifting of high-/low-speed fluid from the center/outer jet inducing
positive/negative streaks, respectively. These mode shape qualities show agreement
with previous local analyses of non-modal growth in laminar (Boronin, Healey, and
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Figure 3.6: Cross plane at G/� = 5 of rolls and streaks at < = 3 computed via
resolvent in Figure 3.5. The red-blue contours present streaks with values set at
±0.75‖u1 : DG (G/� = 5)‖∞. The overlaid vectors represent the forcing rolls in (a)
and response rolls in (b).

Sazhin, 2013; Jimenez-Gonzalez andBrancher, 2017) and turbulent jets (Nogueira et
al., 2019). More precisely, the forcing rolls show strong radial velocities coincident
with maximum streamwise response for both azimuthal wavenumbers, while strictly
azimuthal velocities are located exactly between positive and negative streaks. This
latter observation (i.e. location of azimuthal velocities) has implications for results
found via the resolvent sensitivity analysis and will be discussed further in § 3.4.
Additionally, the forcing rolls give rise to response rolls shown in Figure 3.6 (b)
presenting similar velocity characteristics as the forcing vectors, however, the re-
sponse vectors show the vortices are centered near the jet, a quality not shared with
the forcing vectors.

To ensure the visualized streamwise components in Figure 3.5 are the dominant
variables, we present component-wise amplitudes of each variable. Figure 3.7
shows quantitative comparisons of the compressible energy inner product computed
at each streamwise position between SPOD ((C → 0) and resolvent ((C = 0), for
< = 1, 3. We emphasize that the full compressible energy inner product of the five
variables over the streamwise direction is unity by construction. The curves from
SPOD (dotted) and resolvent (solid) are trend-wise similar, with noise in the SPOD
results due to statistical convergence issues. The streamwise velocity response
(i.e. streaks) is clearly the dominant response variable throughout the domain
for both the resolvent and SPOD analyses. For the forcing terms, the radial and
azimuthal velocities dominate throughout the domain by two orders of magnitude
and correspond to the streamwise vorticity (i.e. rolls). Together, the forcing and
response amplitudes confirm SPOD and resolvent modes computed at (C = 0 are
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Figure 3.7: Component-wise amplitude curves in the streamwise direction of the
streaks for (C = 0 and < = 1 and 3. Optimal response (top) and forcing (bottom)
amplitudes from resolvent (solid) and SPOD (dotted) analyses as a function of
streamwise coordinate from the nozzle exit.

dominated by the lift-up mechanism.

The generation of streaks through the lift-up mechanism is also observed for the
transonic," 9 = 0.9, and supersonic," 9 = 1.5 cases, showing similar trends. SPOD
and resolvent analysis results for both jets, providing even clearer agreement, are
shown in Appendix B.1.

3.4 Interplay of lift-up, Kelvin-Helmholtz, and Orr mechanisms
We now discuss the interplay between the three jet mechanisms in the frequency-
wavenumber space.

However, before proceeding, we emphasize that distinct characteristics of each
mechanism generally refer to the response, as, for example, the optimal forcings for
both KH and Orr wavepackets are similar. Garnaud et al. (2013b) found that the KH
preferred jet mode could be more efficiently excited through the Orr mechanism in
the pipe upstream of the jet, thus combining algebraic spatial growth in the pipe with
the downstream exponential growth associated with KH. This is analogous to the
triggering of Tollmien-Schlichting waves via the Orr forcing structures in boundary
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Figure 3.8: A cartoon mechanism map highlighting the know regions of active
mechanisms along the < = 0 and (C = 0 axes. The locations of the circles mirror
the placement of the subsequent SPOD and resolvent analyses and denote their
location in the frequency-wavenumber plane.

layers (Åkervik et al., 2008). In a similar vein, the Orr mechanism has also been (for
small, but non-zero streamwise wavenumbers) observed to accompany the lift-up
mechanism in both the plane shear layer (Arratia, Caulfield, and Chomaz, 2013) and
wall-bounded flows (Hack and Moin, 2017). Therefore, in this analysis we note that
the Orr mechanism will likely be present throughout the frequency-wavenumber
space considered. The question we seek to address here is which mechanism is
dominant in energy/amplification (i.e. SPOD/resolvent analyses). In most cases, we
will find that lift-up (discussed next) or KH are the dominant mechanism, however,
when both mechanisms are suppressed, the Orr mechanism becomes dominant by
default.

Based on previous KH and Orr studies discussed in the introduction and results
of the prior section on lift-up, we hypothesize regions of dominance between the
mechanisms as a function of frequency and azimuthal mode number in Figure
3.8. This map will be filled in and clarified in the remainder of this section. The
Orr mechanism would be present over all frequencies and wavenumbers, but only
dominant where the lift-up and KH are not strongly amplified. Lift-up would
dominate at (C → 0 (but is absent for < = 0), whereas KH would dominate over a
range of intermediate frequencies.

To fill in the map, we plot in Figure 3.9 the streamwise velocity of the dominant
SPOD (a) and resolvent forcing/response (b/c) at the 9 frequency-wavenumber pairs
depicted in Figure 3.8. For these same frequency-wavenumber pairs, Figure 3.10
shows the radially integrated amplitudes for all response flow variables (in both
SPOD and resolvent), whereas Figure 3.11 shows the radially integrated amplitudes
of the forcing flow variables. Finally, the sensitivity of the resolvent gains for
selected cases is shown in Figure 3.12.
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(c) Resolvent forcing
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Figure 3.9: (a) Most energetic SPOD, (b) resolvent response, (c) and resol-
vent forcing modes for azimuthal wavenumbers < = [0, 1, 3] and frequencies
(C = [0.05, 0.2, 0.6]. Streamwise velocity perturbation, DG , component is shown
with contours corresponding to ±0.5‖DG ‖∞, with projection coefficients, |ψ∗1Wu1 |,
between the full SPOD responses, ψ1, and resolvent responses, u1, provided in
(b). Note the change in domain limits, G/� ∈ [0, 30], [0, 20], and [0, 10] for
(C = [0.05, 0.2, 0.6], respectively.

A detailed analysis of these plots is given in the following subsections. Overall, one
can see that the resolvent and SPOD analyses show significant agreement between
the mode shapes and their component-wise amplitude content, particularly for the
moderate frequencies where KH low-rank behavior is expected. The resolvent
modes (Figure 3.9 (b,c)) are similar to those presented in Schmidt et al. (2018), but
there are two important differences. The first is that these modes were computed by
including an eddy-viscosity model in the resolvent operator, greatly improving the
agreement between SPOD and resolvent, particularly at low (C (Pickering, Rigas,
Sipp, et al., 2019). The second difference is that we plot streamwise velocity rather
than pressure, which better allows us to isolate features associated with the differing
mechanisms.
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Figure 3.10: Streamwise evolution of component-wise amplitude curves for resol-
vent (solid lines) and SPOD (dotted lines) analyses. The layout of the Figure mirrors
that of Figure 3.9 with < = 3 represented in the first row followed by < = 1, 0, and
the first column displaying the lowest (C increasing with columns to the right. Note
that the truncated domains shown in Figure 3.9 are maintained for each (C −< pair.

KH-dominated response ((C = 0.6, < = 0, 1)
At [<, (C] = [0, 0.6], the response is dominated by the KH mechanism (Schmidt
et al., 2018) and displays the many characteristics described earlier. The SPOD and
resolvent modes shown in 3.9 are almost indistinguishable, and similar to what has
been previously reported using PSE. The associated forcing structures (Figure 3.9
(d)) are localized near the lip line of the nozzle and are tilted at an angle ∼ 45◦,
representative of Orr-type forcing known to efficiently trigger the KH mechanism
(Garnaud et al., 2013b; Tissot, Lajús Jr, et al., 2017; Tissot, Zhang, et al., 2017;
Lesshafft et al., 2019). We also find an estimated phase speed of 2?ℎ ≈ 0.8 and a
90◦ phase shift at the critical layer where the apparent phase speed is equal to the
mean flow speed (Cavalieri, Rodríguez, et al., 2013) (phase speed is estimated by
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Figure 3.11: Streamwise evolution of component-wise amplitude curves for resol-
vent forcing modes. The layout and streamwise extent of each plot is identical to
Figure 3.10.

taking the Fourier transform in the streamwise direction of the LES pressure along
the lip line). Similar behavior is observed for < = 1 wavenumbers at (C = 0.6, for
which the KH response is also dominant.

The component-wise amplitude curves for < ∈ [0, 3] and (C = 0.6 in Figure 3.10
also support the KH interpretation with an initially rapid (exponential) growth fol-
lowed by saturation and decay by G/� ≈ 5. By contrast with what will be shown for
the lowest frequency, the velocity components (streamwise, radial, and azimuthal)
have similar amplitudes, apart from the absence of azimuthal velocity when < = 0.
Forcing modes in Figure 3.11 for all azimuthal wavenumbers are concentrated up-
stream with the maximum forcing amplitude occurring within G/� ≤ 0.1 and along
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Figure 3.12: Resolvent-based spatial sensitivity plots for all nine velocity combi-
nations for [<, (C] = [0, 0.6] (a), [<, (C] = [0, 0.05] (b), and [<, (C] = [3, 0] (c).
Contours are set for each of the three plots by the maximum sensitivity, ±‖v1◦u∗1‖∞
, across all nine velocity pairs. Note for the KH case, the domain is reduced to
G/� = [0, 10] and A/� = [0, 2] to highlight the upstream behavior, as no sensitivity
is observed outside this domain. The white, dotted lines provide reference to the
envelope of the jet that is > 10% of the maximum turbulent kinetic energy.
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the lip line. The forcing decays by at least two orders of magnitude within the first
two jet diameters. This observation is also apparent from the gain sensitivity anal-
ysis (Figure 3.12 (a)), showing sensitivity localized to the inner edge of the shear
layer terminating around the end of the potential core, with similar component-
wise sensitivity found active for all velocity components (i.e. v1 : DG , v1 : DA
and u1 : DG ,u1 : DA pairs). This localized sensitivity is in stark contrast with the
sensitivity contours associated with the Orr and lift-up mechanisms discussed next.

Orr-dominated response ((C → 0, < = 0)
At [<, (C] = [0, 0.05 − 0.2], the Orr mechanism dominates the response as shown
previously by Schmidt et al. (2018). The upstream region of the forcing modes
(Figure 3.9 (d)) is inclined at −45◦ against the mean shear, and the response (Fig-
ure 3.9 (c)) turns from −45◦ to +45◦ throughout their envelope. The response modes
possess a phase speed of approximately 0.4, and although we still observe a phase
change across the critical layer, this behavior is rather weak when comparing to the
KH-dominated modes described in § 3.4 ((C = 0.6). In contrast to KH, the response
grows gradually with G/�, peaking some 20 diameters downstream and is only
weakly damped thereafter. We also find both forcing and response modes to peak
near the jet centerline, similar to Orr-type modes found by Garnaud et al. (2013b)
and Lesshafft et al. (2019), rather than at the region of maximum shear in the jets.
Although this seems counter-intuitive for the Orr mechanism, by G/� = 15, well
beyond the close of the potential core, the profile is diffuse, and the “critical layer”
for this phase speed would be relatively close to the jet axis.

Finally, the sensitivity contours (Figure 3.12 (b)) provide contrast with what was
observed for theKH response. First, the sensitivity is high over a spatially distributed
region commensurate with the response region, and reaching far downstream where
the flow no longer supports KH amplification. Secondly, there is a large component-
wise sensitivity between the streamwise velocity forcing and the streamwise velocity
response, a distinguishing characteristic when compared with the KH and lift-up
mechanisms.

Lift-up-dominated response ((C → 0, < > 0)
For < ≠ 0, and approaching zero frequency, the wavepackets in Figure 3.9 (a,b)
show a different structure from the KH-dominated regimes. Although the response
and forcing mode structures are inclined at 45◦ (this response behavior in jets was
also observed by Bradshaw, Ferriss, and Johnson (1964)), and seem to indicate
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Orr mechanism behavior (again, likely present), it is the component-wise amplitude
curves that provide evidence of lift-up. For [<, (C] = [3, 0.05] in Figure 3.10, the
streamwise velocity is approximately an order of magnitude larger than the other
components, whereas for [<, (C] = [0, 0.05] (i.e. Orr only) both streamwise and
radial velocities contribute similarly to the overall mode. The presence of streaks
is directly responsible for this higher streamwise velocity. The forcing in Figure
3.11, by contrast, shows a dominance of radial and azimuthal forcing components,
producing streamwise vortical forcing, v1 : lG . In tandem, the response and forcing
amplitude curves describe the lifting of fluid, via cross-plane rolls, from high- and
low-speed regions of the jet to the fluctuating streamwise velocity response. These
results show that the lift-up mechanism, demonstrated at zero frequency in § 3.3,
persists at small, non-zero frequencies. In this case the streaks are not stationary, and
slowly rotate about the jet. We find evidence of streaks for all non-zero wavenumbers
up to frequencies of (C ≈ 0.2.

The sensitivity analysis (Figure 3.12 (c)), after being described for KH and Orr,
gives further evidence that the lift-up mechanism may be uniquely identified in
turbulent jets. Unlike KH and Orr, we find the largest sensitivity in radial forcing to
streamwise response, and unlike KH, but similar to Orr, the sensitivity is spatially
distributed throughout the domain. The critical difference between Orr and lift-up is
the shift of sensitivity to the radial forcing, streamwise response pair. We expect this
for the lift-up mechanism as the radial forcing component lifts high- and low-speed
regions of the jet to the streamwise response.

One puzzling aspect of the results is the lack of sensitivity of the streamwise velocity
to the azimuthal velocity forcing (Figure 3.12 (c)). In general, streamwise vorticity is
associated with either variation of azimuthal velocity with radius, or radial velocity
with azimuth, and it seems surprising that the sensitivity identifies changes to the
latter, but not the former, as a means to amplify the streaks. This is explained by
the phase between radial/azimuthal forcing and the corresponding response. As
is observed in Figure 3.6 (a,c) in § 3.3, the largest regions of radial forcing are
coincident with the most energetic regions of the streaks (i.e. large sensitivity), but
the largest azimuthal forcing occurs where streaks have low amplitude, resulting in
low sensitivity. The above interpretation is limited to the sensitivity map as defined
by Qadri and Schmid (2017), which examines the structural sensitivity to spatially
localized (delta-function) changes to the structure of the linear system defining the
resolvent. In reality, any finite-sized perturbation would convolve the response
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Figure 3.13: Linear mechanism map estimating the dominant linear mechanisms
in the frequency-wavenumber space of the most amplified resolvent response for
turbulent jets. Red, black, and blue represent the KH, Orr, and lift-up mechanisms,
respectively.

and forcing (rather than multiply them), and likely lead to larger sensitivity to the
azimuthal velocity than reported here.

Linear mechanism map
Following identification of the salient properties of each turbulent jet mechanism,
we propose the mechanism map shown in Figure 3.13 estimating the regions of
mechanism dominance in the frequency-wavenumber space for turbulent jets. We
determine themechanismmap through inspection of individual frequency/azimuthal
modes and identify the nature of the dominant mode by applying the criteria dis-
cussed earlier in this section. For < = 0, the map reflects the shift in dominance of
the KH at moderate Strouhal numbers to Orr at low frequencies, with mechanism
shifts occurring at (C ≈ 0.3 for " 9 = 0.4, 0.9, 1.5. For the lift-up mechanism,
the region of dominance may be estimated as (C/< ≤ 0.1 in Figure 3.13. Al-
though, the lift-up mechanism continues to become more dominant as (C/< → 0,
similar to the findings of Arratia, Caulfield, and Chomaz (2013) for a plane shear
layer as lift-up dominates when :G/:I → 0, where :G , :H are the streamwise and
spanwise wavenumbers, respectively. It is important to stress that this map is an
estimate of mechanism dominance, and mechanisms are simultaneously present at
the boundaries of dominant mechanism regions.

3.5 Local analysis for higher azimuthal modes
Up until now, the SPOD and resolvent analyses have used the full computational
domain extending 30 diameters downstream. The associated Chu compressible
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energy norm, which is integrated over this entire region, is biased toward the lower
azimuthal modes that have long wavelengths and dominate the jet far downstream.
For example, the dominant azimuthal wavenumber for much of the frequency range
is < = 1, and as (C → 0 the dominant azimuthal wavenumber is < = 2. When one
inspects the results for the higher azimuthal modes in the global domain, large noise
downstream prevents the identification of coherent structures likely near the nozzle.
The question arises as to what is the dominant azimuthal wavenumber when smaller
regions closer to the nozzle exit are considered, particularly as (C → 0.

To determine an overall picture of which azimuthal wavenumbers dominate at dif-
ferent streamwise positions in the jet, we first performed SPOD (using blocks of
256 snapshots and a 50% overlap) in 2-D cross-stream planes throughout the range
G/� = [0.5−30]. The three azimuthal wavenumbers exhibiting the largest energy at
each G/� are plotted in Figure 3.14. We see that the maximum energy for G/� = 30
is in line with the global analysis result, at azimuthal wavenumber < = 2. However,
as the plane moves upstream, we see a trend towards higher azimuthal wavenum-
bers. In fact, this trend scales as <<0G ∼ 1/G + 1 (i.e. the maximum wavenumber
approaches 1). This scaling is inversely proportional to the linear scaling of the
shear layer of the jet, ∼ G (Schmidt et al., 2018), and has also been reported from
experimental observations of Jung, Gamard, and George (2004) and Nogueira et al.
(2019) for axial stations G/� ≤ 6 and G/� ≤ 8, respectively. This suggests that the
width of the shear layer determines support for particular azimuthal wavenumbers
as (C → 0.

Next, to better isolate streaks related to higher azimuthal wavenumbers, the truncated
domains (including the 2-D cross-stream planes above) G/� ∈ [0, 2], [0, 5], [0, 10]
are examined for < ∈ [0, 15] using SPOD and resolvent analyses. For these
truncated domains, blocks of 256 snapshots and a 50% overlap suffice even at
low frequencies and are used for this final analysis. Figure 3.15 shows the SPOD
energy spectra and normalized azimuthal frequency-wavenumber maps similar to
the ones reported in Figure 3.4 for the restricted domains, and Figure 3.16 shows
the associated resolvent results.

The restricted SPOD and resolvent spectra and frequency-wavenumber maps are
in striking agreement, and provide insight into both the total energy and the over-
all influence of each wavenumber as the domain is truncated towards the nozzle.
The largest domain, G/� ∈ [0, 10], shows energy peaking at low frequencies and
dominated by low azimuthal wavenumbers, similar to the global spectrum in Figure
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Figure 3.14: Wavenumbers of the three largest SPOD energies from the (C → 0
SPOD bin as a function of streamwise distance. Here SPOD was performed locally
on 2-D streamwise cross sections, and we present a scaling of maximum azimuthal
wavenumber as ∼ 1/G + 1.
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Figure 3.15: SPOD spectra, _1((C, <), for truncated domains of G/� ∈
[0, 2], [0, 5], [0, 10] left to right respectively, for azimuthal wavenumbers < ∈
[0, 15]. (a) SPOD spectrum curves for all wavenumbers. (b) Semi-discrete
frequency-wavenumber maps showing the distribution of energy (as a percentage)
among wavenumbers at each frequency with contour levels at 0-20%.
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(a) Resolvent spectra

0 0.5 1
102

103

0 0.5 1
102

104

0 0.5 1
102

104

(b) Resolvent frequency-wavenumber maps

0 0.5 1
0

5

10

15

0 0.5 1 0 0.5 1

Figure 3.16: Resolvent spectra, f2
1 ((C, <), for truncated domains of G/� ∈

[0, 2], [0, 5], [0, 10] left to right respectively, for azimuthal wavenumbers < ∈
[0, 15]. (a) Resolvent spectrum curves for all wavenumbers. (b) Semi-discrete
frequency-wavenumber maps showing the distribution of energy (as a percentage)
among wavenumbers at each frequency with contour levels at 0-20%.

3.4. We also see that the peak azimuthal wavenumber at (C → 0 has increased,
yet the moderate-frequency behavior associated with KH remains active for low
azimuthal wavenumbers, similar to the full domain analysis. Truncating the domain
to G/� ∈ [0, 5] presents a relative shift in total energy towards higher frequencies
and the KH content maintains its strong < = [0, 1, 2] behavior at these frequencies,
while the distribution of energy at low frequencies is now centered at < = 6. The
final truncation, G/� ∈ [0, 2], shows a significant drop in energy at low frequencies
and higher frequencies dominate the energy spectrum, however, the peak maximum
azimuthal wavenumber at low frequencies has shifted much higher, centered at
< = 10 near zero frequency.

The Figures also show a clear separation between the lift-up mechanism’s influence
in the low-frequency portion of the energymap versus theKHmechanism’s influence
in moderate-frequency regions. Interestingly, both of these observations, despite
truncation of the jet domain, still fall in line with the estimated mechanism map,
Figure 3.13, with lift-up increasingly apparent as (C/< → 0.
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Figure 3.17: Three-dimensional reconstruction of the first SPOD mode for
< = [5, 10] (top and bottom, respectively) at three truncated domains G/� ∈
[0, 2], [0, 5], [0, 10] (left to right, respectively) for (C → 0. Streamwise velocity,
ψ1 : DG , is denoted as red-blue with isosurfaces ±25% the maximum streamwise ve-
locity and streamwise vorticity, ψ1 : lG , is shown as yellow-green with isosurfaces
as ±50% of the maximum streamwise vorticity.

To further show that the (C → 0 SPOD/resolvent energies/amplifications in this
truncated domain analysis correspond to streaks, we show 3-D reconstructions
of streamwise velocity and streamwise vorticity for < = 5, 10 for both SPOD
and resolvent in Figures 3.17 and 3.18, respectively. The truncated SPOD and
resolvent modes show close alignment with each plot for < = 5 and 10, presenting
smooth streaks of streamwise velocity (u1 : DG), accompanied with streamwise rolls
(u1 : lG) indicative of the lift-upmechanism, for all domains considered. Azimuthal
wavenumber < = 5 presents a case in which streaks are present with significant
energy for each truncated domain, and as such, give rise to well-defined streaks that
occupy the entire domain. For < = 10, streamwise velocity streaks and streamwise
vorticity rolls are easily identified in the truncated domains G/� ∈ [0, 2] and [0, 5].
However, the G/� ∈ [0, 10] domain gives a differing behavior for both SPOD and
resolvent modes. In the resolvent case, highly amplified streaks are observed until
G/� ≈ 5, where response rolls disappear and the streaks begin to decay, showing that
steady streaks are no longer supported downstream at this azimuthal wavenumber.
This is also seen in the SPOD results as the original streaks decay at G/� ≈ 5 and a
low-frequency, slowly rotating streak enters towards the end of the domain. This can
be attributed to the various domain and convergence issues described earlier, where
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Figure 3.18: Three-dimensional reconstruction of the first resolvent mode for
< = [5, 10] (top and bottom, respectively) at three truncated domains G/� ∈
[0, 2], [0, 5], [0, 10] (left to right, respectively) for (C = 0. Streamwise velocity,
u1 : DG , is denoted as red-blue with isosurfaces ±25% the maximum streamwise
velocity, streamwise vorticity, u1 : lG , is shown as yellow-green with isosurfaces as
±50% of the maximum streamwise vorticity, and magenta-cyan represents isosur-
faces of streamwise forcing vortices, v1 : lG , at ±50% of the maximum streamwise
forcing vorticity.

a larger domain introduces additional energetic structures and noise which may be
aliased into the (C → 0 bin. Again, for the global results presented earlier in the
paper, this was averted by increasing the number of snapshots in the discrete Fourier
transform (DFT) and reducing the bin sizes. Nevertheless, these results show that
although high azimuthal wavenumbers do not appear to provide significant energy
to the full flow field energy (e.g. Figure 3.4), their energetic impact is significant in
the near nozzle region and is a result of the lift-up mechanism.

3.6 Conclusions & outlook
Wehave extended the linear resolvent and data-driven SPODanalyses of turbulent jet
mean flow fields to the zero-frequency limit. The main result is a confirmation and
extension of the local analysis of Nogueira et al. (2019), namely the identification of
the lift-up mechanism as an important linear amplifier of disturbances in turbulent
jets.

We found lift-up responsible for the generation of streamwise elongated structures,
known as streaks, at low-frequency, non-zero azimuthal wavenumbers for turbulent
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round jets at Mach numbers 0.4, 0.9, and 1.5. At moderate frequencies, KH
becomes the globally dominant mechanism, and the Orr mechanism is active over
all frequencies but plays a subdominant role at those frequencies and azimuthal
wavenumbers where lift-up and KH are active. The behavior of the < = 0 response
is unique, as axisymmetric streaks cannot exist; rather, the Orr response is dominant
for low and high frequencies, with theKH response dominating over an intermediate-
frequency regime centered on (C = 0.6. For non-axisymmetric modes, the lift-up
mechanism, and resulting streak response, is dominant as (C/< → 0, although with
progressively higher wavenumber, lift-up responses are limited in spatial extent to
nearer the nozzle exit. We find that the azimuthal wavenumber of dominant streak
responses is inversely proportional to shear layer width and scales with ∼ 1/G.

For all regimes, there is a reasonable agreement between the resolvent analysis and
SPOD modes from the associated LES database, confirming that the theoretical
mechanisms are active (and dominant) in the turbulent regime. This agreement
is predicated on the addition of an eddy-viscosity model in the linear resolvent
(Morra et al., 2019; Pickering, Rigas, Sipp, et al., 2019). While the simple model
we employed suffices to establish the link between theory and observation, further
refinements to the model would be required to establish a resolvent analysis that is
predictive of turbulence structure.

Streaks observed using SPOD show similar structure to (space-only) PODmodes re-
ported by Freund and Colonius (2009) and SPOD modes with limited spatial extent
by Citriniti and George (2000) and Jung, Gamard, and George (2004), and predicted
by resolvent analyses for < > 0 at (C = 0. Both SPOD and resolvent modes provide
significant qualitative agreement in both streamwise vorticity and streamwise veloc-
ity, which are related to rolls and streaks, respectively. The resolvent results show
optimal forcing in the form of streamwise vortices (rolls, v1 : lG) from the nozzle
exit decaying slowly downstream, followed by a response of streamwise vortices
(u1 : lG), and, finally, further downstream there appears a response of stream-
wise velocity (u1 : DG), or streaks. These characterizations of the flow, from both
resolvent and SPOD, now link multiple previous experimental and numerical obser-
vations in transitional and turbulent jets of streamwise vortices (Bradshaw, Ferriss,
and Johnson, 1964; Liepmann, 1991; Martin and Meiburg, 1991; Paschereit et al.,
1992; Liepmann and Gharib, 1992; Arnette, Samimy, and Elliott, 1993) and streaks
(Citriniti and George, 2000; Caraballo et al., 2003; Jung, Gamard, and George,
2004; Freund and Colonius, 2009; Cavalieri, Rodríguez, et al., 2013) to the lift-up
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mechanism, forced upstream by a separate set of streamwise vortices.

Our results show that the lift-up mechanism, like the KH and Orr mechanisms,
may be modeled as a direct amplification of disturbances to the turbulent jet mean
flow. However, this work does not refute the idea, extrapolated from transitional
free shear flows, that streaks arise via secondary instability of the KH rollers. The
resolvent forcing that generates lift-up could involve, through triadic interactions,
braid vortices. Indeed, the optimal forcing computed via the resolvent is non-zero
in the region where the KH response is active. An explicit analysis of the triadic
interactions involved in specific realizations of the turbulent flow would be needed
to answer this question, a topic left for future research. Nevertheless, even though
a nonlinear analysis would provide deeper insight into turbulence, the simplicity
and ability of the linear resolvent framework to capture observed mode shapes and
qualitatively capture their relative amplitudes across the wavenumber-frequency
domain is remarkable.

The presence of the lift-up mechanism in turbulent jets also suggests further inves-
tigation of the resulting dynamics, and its potential impact for control of quantities
such as jet noise. Considering streaks are highly energetic structures, it is likely
that their behavior (i.e. breakdown and regeneration) have significant impact on the
mean flow and other structures in turbulent jets, such as Orr and KH wavepackets
and qualities associated with these structures’ intermittency. In fact, noise reduction
has been accomplished via the introduction of streamwise vortices at the nozzle exit
using tabs (Samimy, Zaman, and Reeder, 1993; Zaman, Reeder, and Samimy, 1994;
Zaman, 1999), chevrons (Bridges, Wernet, and Brown, 2003; Bridges and Brown,
2004; Saiyed, Mikkelsen, and Bridges, 2003; Callender, Gutmark, and Martens,
2005; Alkislar, Krothapalli, and Butler, 2007; Violato and Scarano, 2011), and
microjets (Arakeri et al., 2003; Greska et al., 2005; Yang et al., 2016). However,
these changes have, in certain configurations, increased noise, leaving fundamental
questions regarding the dynamic impact of imposed streamwise vortices and streaks.
Recently, Rigas et al. (2019) showed the presence of both chevron induced stream-
wise vortices and their accompanying streaks in the base flow of a turbulent, chevron
jet, while Marant and Cossu (2018) have reported the ability of streaks, at partic-
ular wavenumbers, to stabilize the KH instability for a planar laminar shear flow.
Considering past computational work of Sinha, Rajagopalan, and Singla (2016)
(using PSE) demonstrated the ability of chevrons to “stabilize” (i.e. weaken) KH
wavepackets, the dominant mechanism in jet noise (Jordan and Colonius, 2013), it
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is likely that lift-up presents a fundamental mechanism of turbulent jet flow that may
be tuned appropriately for optimal jet noise reduction techniques.
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C h a p t e r 4

RESOLVENT-BASED MODELING OF TURBULENT JET NOISE
An adaptation of a proceeding of the 2020 AIAA Scitech Forum

Chapter Abstract

Linear resolvent analysis has demonstrated encouraging results for modeling coherent struc-
tures in jets when compared against their data-educed counterparts from high-fidelity large-
eddy simulations (LES). However, leveraging resolvent modes for predicting statistics of the
far acoustic field remains elusive. In this study, we extend resolvent analysis to that of an
acoustic analogy that relates the near-field forcing to the far-field acoustics 100 diameters
from the nozzle. We use an LES database of round, isothermal, Mach 1.5 and 0.9 jets to
produce an ensemble of realizations for the acoustic field, both in the near- and far-field, that
we project on to a limited set of = resolvent modes. In the near-field, projections are done
on a restricted acoustic output domain, A/� = [5, 6], while the far-field projections are done
upon a 100 diameter arc from the nozzle. In each case, this allows the LES realizations to be
recast in the resolvent basis via a data-deduced, low-rank, =×= cross-spectral density matrix.
We find substantial improvements to the acoustic field reconstructions with the addition of
a RANS-derived eddy-viscosity model to the resolvent operator. The reconstructions quan-
titatively match the most energetic regions of the acoustic field across Strouhal numbers,
(C = [0 − 1], and azimuthal wavenumbers, < = [0, 2], using only one resolvent mode. We
then present the necessary forcing amplitudes required for the associated resolvent modes
and suggest avenues for modeling this forcing. Finally, we present a simple function, using
only two fitting parameters, that results in a rank-1 resolvent model that agrees to within
2dB of the peak acoustic region for both jets.

4.1 Introduction
This thesis aims to further work on the development of accurate, reduced-order
models for turbulent jet-noise prediction, control, and ultimately, reduction. Our
goal is to develop a jet-noise model founded upon the underlying physics of turbulent
flows that is both low-rank and provides direct insight into the mechanisms primarily
responsible for noise generation. The resolvent analysis (McKeon and Sharma,
2010; Jovanović and Bamieh, 2005; Jeun, Nichols, and Jovanović, 2016; Schmidt
et al., 2018), also known as input-output analysis, provides a useful framework for
achieving these goals.

The central idea of the resolvent framework for jet noise modeling is similar to the
acoustic analogy (Lighthill, 1952; Goldstein, 2003), whereby a forcing term, related
to the statistics of the hydrodynamic near-field turbulence, gives rise, through a
linear operator, to the observed far-field sound. The resolvent framework differs in
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two important ways. First, the operator is decomposed into its singular components
that represent the maximal amplification between the forcing and the output. This
permits the resulting acoustic field to be described at low rank, and thus limiting the
forcing statistics that must be modeled. Secondly, the full linearized Navier–Stokes
equations are used as the propagator, and we seek a modal basis that represents both
near and far-field coherent structures.

Before recent advances in computational power, the idea of modeling both the hy-
drodynamic component along with the acoustics would be seen as both unnecessary
and computationally taxing. However, the ability to resolve both components of
the flow is in fact a benefit. Starting with the experimental findings of Mollo-
Christensen (1967) and Crow and Champagne (1971), it has become clear that
coherent structures in the hydrodynamic near-field are directly responsible for far-
field sound (Jordan and Colonius, 2013). These structures take the spatio-temporal
form of wavepackets and have been found to be the dominant source for aft angle
sound (Jordan and Colonius, 2013), as well as partial contributors to sideline noise
(Papamoschou, 2018; Jeun and Nichols, 2018). These wavepackets may be linked
to the early works of Crighton and Gaster (1976) (and Michalke (1977)) who hy-
pothesized that coherent structures could be described as linear instability modes
of the mean flow via modal analysis. However, it has now become apparent that
the correct representation of wavepackets is that of a highly-amplified response to
turbulent fluctuations, which is directly found via the resolvent framework.

Resolvent analysis uses the Singular Value Decomposition (SVD) to decompose
the linear terms of the resolvent operator, identifying sets of mutually orthogonal
forcing/input and response/output modes, and ranking them in terms of the cor-
responding energetic gain between the forcing and response. This is particularly
important as it allows our model to select the most relevant amplification mecha-
nisms for noise generation. We can then retain a limited set of the resolvent modes to
produce a reduced-order model, or in other words, a reduced-rank acoustic analogy.

Several studies have applied resolvent analysis to develop low-rank jet models (Jeun,
Nichols, and Jovanović, 2016; Cavalieri, Jordan, and Lesshafft, 2019; Lesshafft et
al., 2019). The existence of relatively low-rank responses in round, turbulent jets
was shown by Schmidt et al. (2018), with significant agreement between struc-
tures found through spectral proper orthogonal decomposition (Towne, Schmidt,
and Colonius, 2018) (SPOD) of a high-fidelity experimentally-verified large-eddy
simulations (LES) of jets (Brès, Jordan, et al., 2014; Brès, Jaunet, et al., 2015).
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Of particular relevance to this study, are “acoustic resolvent modes” induced by
performing resolvent analysis with an output domain defined over a region where
fluctuations are purely acoustic. Through implementation of an acoustic output
domain, resolvent analysis is able to filter out energetic, but acoustically irrelevant
structures in the near-field. Jeun, Nichols, and Jovanović (2016) performed such
an analysis and found that for a Mach 1.5 jet, at Strouhal number (C = 0.33 and
azimuthal wavenumber < = 0, that the first resolvent mode reconstructs 57% of the
acoustic energy, but through inclusion of the next 23 resolvent modes, the recon-
struction improved to 70% of the acoustic energy. This study looks to perform a
similar analysis, in that we compute many acoustic resolvent modes and assess how
well they reconstruct the acoustic energy. However, we also look to reduce the rank
of the far-field significantly with the use of an eddy-viscosity model and generalize
the performance of the resolvent framework across frequencies (C = 0−1, azimuthal
wavenumbers < = [0 − 2], and for two turbulent jets at Mach numbers of 0.9 and
1.5.

For a resolvent jet model to fully reconstruct flow statistics, and in this case those
of the acoustic field, a resolvent-based model must incorporate sub-optimal modes
(Schmidt et al., 2018) and correctly describe correlations (i.e. covariance) between
modes inherent to turbulent flow (Towne, Lozano-Durán, and Yang, 2020). The
latter requirement can be shown via the statistical representation of the resolvent
operator, (Towne, Schmidt, and Colonius, 2018)

SHH = RS 5 5R
∗ (4.1)

where SHH and S 5 5 are the cross-spectral density tensors of the responses and the
forcing respectively and R is the resolvent operator. This equation shows that if
the forcing CSD, describing spatial correlations or “color” (Zare, Jovanović, and
Georgiou, 2017) can be modeled (Towne, Bres, and Lele, 2017), then the resolvent
operator identically reconstructs the flow statistics, SHH. If the forcing were spatially
uncorrelated, S 5 5 = �, where � is a diagonal matrix, then the eigenvectors of SHH,
which are the SPOD modes of the outputs, are aligned with the eigenvectors of
RR∗ (Towne, Schmidt, and Colonius, 2018), or the response modes of the resolvent
operator, R. Recent work incorporating classical eddy-viscosity models into the
resolvent operator showed a significant improvement in the alignment between
SPOD and resolvent modes in jets (Pickering, Rigas, Schmidt, et al., 2020), reducing
the resulting effort required to model the effective S 5 5 by reducing the magnitude
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of the off-diagonal terms. We utilize the same eddy-viscosity model in the present
work.

This paper explores an approach to describe the coupling between resolvent modes
that is necessary for reconstructing the acoustic field with a minimal set of resolvent
modes. The coupling provides directional and energetic variability in acoustic
radiation inherently important for noise prediction (Cavalieri, Jordan, Agarwal, et al.,
2011). Determination of the coupling between modes is performed by leveraging an
ensemble of LES realizationswhich are projected on to a limited set (i.e. low-rank) of
acoustic resolvent modes. From these projections, we attain a (drastically) reduced-
order cross-spectral density between the retained modes–a Hermitian, frequency-
dependent matrix of size = × = that accurately represents the acoustic field.

Organization of the chapter is as follows. We first briefly describe the LES databases
used, the main details pertaining to resolvent analysis, and present the statistical
description of the resolvent framework for reconstructing the acoustic field and
estimating the reduced order covariance matrix in § 4.2. In § 4.3 we present
resolvent modes and LES reconstructions in the resolvent basis for one frequency-
wavenumber pair for the Mach 1.5 jet before generalizing the approach to both
jets over (C = [0, 1] and < = [0, 2], and to both the near- and far-field acoustic
regions. In the near-field section we compare the impact of including a RANS eddy
viscosity to the resolvent operator and find it presents a significantly more efficient
resolvent basis. We then present results for the far-field, along an arc at 100� from
the nozzle, and show that reconstructions for both jets may be found using only the
optimal resolvent mode. Finally, we conclude with a discussion on how the correct
forcing coefficients may be estimated for a predictive jet noise model.

4.2 Methods
Large Eddy Simulation database
The LES database and resolvent analysis are described in Schmidt et al. (2018) and
Towne, Schmidt, and Colonius (2018). For brevity, we summarize the main details
here. The LES databases, transonic (Mach 0.9), and supersonic (Mach 1.5) cases,
were computed using the flow solver “Charles” and details on numerical methods,
meshing, and subgrid-models can be found in Brès, Ham, et al. (2017) and Brès,
Bose, et al. (2018) along with validation cases conducted at PPRIME Institute,
Poitiers, France for the Mach 0.9 jet (Brès, Jordan, et al., 2018). The Mach 1.5
round jet corresponds to a Reynolds number '4 9 = d 9* 9�/` 9 = 1.76 × 106, and
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for the Mach 0.9 jet '4 9 = 1.01×106, where subscript 9 gives the value at the center
of the jet, d is density, ` is viscosity, and " 9 is the Mach number " 9 = * 9/0 9 , with
0 9 as the speed of sound at the nozzle centerline.

Throughout the chapter, variables are non-dimensionalized by the mean jet velocity
* 9 , jet diameter �, and pressure d 9*2

9
, with the resulting equation of state ? = d)

W"2
9

,
with ) denoting temperature and W the ratio of specific heats. Frequencies are
reported in Strouhal number, (C = 5 �/* 9 , where 5 is the frequency. The database
consists of 10,000 snapshots separated by ΔC2∞/� = 0.1 and 0.2 for " 9 = 1.5 and
" 9 = 0.9 jets, respectively, with 2∞ as the ambient speed of sound, and interpolated
onto a structured cylindrical grid G, A, \ ∈ [0, 30] × [0, 6] × [0, 2c], where G, A, \ are
streamwise, radial, and azimuthal coordinates, respectively. Variables are reported
by the vector

q = [d, DG , DA , D\ , )]) , (4.2)

where DG , DA , D\ are the three velocity components.

For an ensemble approach, the LES database of 10,000 snapshots is segmented into
bins of 256 snapshots, with an overlap of 75%, and under the implementation of
a Hamming window, resulting in 153 independent realizations of the flow. Each
realization is then decomposed in the azimuthal direction and in time. The temporal
decomposition provides a resolution of (C = 0.026 for the " 9 = 1.5 jet and (C =
0.0217 for " 9 = 0.9 and the azimuthal decomposition is valid up to < = 68,
however, the acoustically relevant azimuthal wavenumbers are much smaller, and
only azimuthal wavenumbers < = [0 − 2] are considered in this paper.

Considering the LES database only extends to A/� = 6, we implement a Kirch-
hoff surface (details provided in Appendix C.1), to the azimuthally and temporally
transformed realizations of the flow. In doing so, we create an ensemble of far-field
realizations located along an arc, with angle q, of 100� from the nozzle at each
frequency and azimuthal wavenumber. As done in Brès, Ham, et al. (2017), and
associated experiments (Schlinker, Simonich, Reba, Colonius, and Ladeinde, 2008;
Schlinker, Simonich, Reba, Colonius, Gudmundsson, et al., 2009), we specifically
compute the acoustics for the aft-angle sound from q = 100 − 160 and find our
acoustic far-field is in close agreement ( within 2dB) with the far field computed via
a Ffowcs Williams-Hawkings (FWH) surface in the LES calculation. Alternatively,
we could have proceeded with the FWH data, however, doing so would provide an
inconsistency between the LES and resolvent approach taken here for the near to
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far-field propagation. Additionally, propagating the LES realizations with a Kirch-
hoff surface allows for a continuous computation of the arc, while the far-field data
from the LES is rather coarse, with data located 5◦ apart.

Resolvent analysis
For the round, statistically-stationary, turbulent, jets considered in this thesis, the
compressible Navier–Stokes, energy, and continuity equations are linearized via
a standard Reynolds decomposition, and Fourier transformed both in time and
azimuthally to the compact expression

(8lI − A<)q<,l = L<,lq<,l = f<,l, (4.3)

whereL<,l is the forward linear operator, f constitutes the nonlinear forcing in each
variable, l is the frequency, and < is the azimuthal wavenumber. For the purpose
of suggesting resolvent analysis as a predictive modeling tool, mean-flow quantities
used in the operator are derived from a RANSmodel, fitted closely to the LES mean
flow. Although the mean flows are similar, the computation of a RANS model,
using the standard ^ − n closure equations, also provides an eddy-viscosity field.
With previous results of Pickering, Rigas, Sipp, et al. (2019) and Pickering, Rigas,
Schmidt, et al. (2020) showing drastically improved agreement between SPOD and
resolvent modes with the inclusion of an eddy-viscosity model, we incorporate the
eddy-viscosity field from the RANS as `) = 2�`:2/n , where 2 and �` are scaling
constants (2 = 0.2, �` = 0.0554 for " 9 = 1.5 and �` = 0.0623 for the " 9 = 0.9
jet), : is the turbulent kinetic energy field, and n is the turbulent dissipation field.

Continuing with the derivation of the resolvent operator, we rewrite Equation 4.3 by
moving L<,l to the right-hand side gives,

q<,l = L
−1
<,lf<,l. (4.4)

To specify particular domains for both the response and forcing, we may write the
above as

q<,l = L
−1
<,lBf<,l, (4.5)

and define the output variable

y<,l = Cq<,l, (4.6)



90

whereB andC are input and outputmatrices. Then by introducing the compressible
energy norm of Chu (1965),

〈q1, q2〉� =
∫ ∫ ∫

q∗1diag
(

)̄

Wd̄"2 , d̄, d̄, d̄,
d̄

W(W − 1))̄"2

)
q2AdGdAd\ = q∗1Wq2,

(4.7)
(where superscript ∗ denotes the complex transpose) via the matrixW to the forcing
and response, (W 5 =WH =W ) gives the weighted resolvent operator, R̂<,l,

R̂<,l = ]1/2
H CL−1

<,lB]−1/2
5

. (4.8)

Resolvent modes may then be found by taking the singular value decomposition of
the weighted resolvent operator giving

R̂<,l = Û<,l�V̂
∗
<,l (4.9)

where the optimal response and forcing modes are contained in the columns of
U<,l = W −1/2

H Û<,l, with U<,l = [u1
<,l,u

2
<,l, ...,u

#
<,l], V<,l = W −1/2

5
V̂<,l,

V<,l = [v1
<,l, v

2
<,l, ..., v

#
<,l], and � = diag(f1, f2, ..., f# ) as the optimal gains.

Near-field acoustic output

For analysis of the near-field acoustics, the output matrixC is chosen to only include
pressure, ?′ = d′)̄+d̄) ′

W"2
9

, from G/� = [0, 30], and A/� = [5,20]. Ideally, the LES
domain would extend from A/� = [5, 20] so that the LES could be directly projected
onto the resolvent basis, however, the LES database (i.e. the saved data from the
LES) only extends to A/� = 6. Although one could define an output matrix C
that only includes that surface at A/� = 6, the resolvent modes may still contain
hydrodynamic behavior (unless allowed to propagate further from the jet), thus we
use the larger domain to ensure the modes are clearly acoustic. Using the larger
domain presents a clear loss of orthogonality in the space represented by the LES
domain. This is alleviated by truncating the modes to A/� = [5, 6] (after computing
the resolvent SVD) and implementing a Moore-Penrose inverse such that a least
square fit of the LES in the resolvent basis can be performed. Additionally, the input
matrix, S̃VV, is chosen to be identity for the most general results, where other studies
(Towne, Bres, and Lele, 2017) suggest the use of a filter based on the location and
magnitude of turbulent kinetic energy in the jet.

Far-field acoustic output

To define an input-output relationship from the near-field forcing to the far-field
acoustics, we introduce a Kirchhoff surface, applied as a linear operator and derived
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in Appendix C.1, propagating a surface in the near-field to the far-field. We define
three radii, ' as the radial coordinate of the near-field cylindrical surface, A as
the coordinate pertaining to the far-field cylindrical surface, and d representing the
distance from the nozzle in spherical coordinates (e.g. d/� = 100 for this study).
As described in § 4.2, the resolvent problem is defined as

q = RBf (4.10)

y = C',dq (4.11)

where the output matrixC',d is the total Kirchhoff operator that maps the near-field
cylindrical surface, ', to the far-field spherical surface, d. This operator is linearly
composed of many Kirchhoff surfaces, C',A , detailed next.

The cylindrical Kirchhoff operator is composed of a number of linear operations to
ensure accurate results and is defined as,

C',A =D
∗HADPNTC', (4.12)

where C' is a surface selection matrix (∈ R#BDA 5 024×#A#G#E ), N is an interpola-
tion matrix from a non-uniform grid to a uniform grid with ΔG/� = 0.025 (∈
R#D=8 5 >A<×#BDA 5 024), T is a Tukey windowing matrix (using a taper value of 0.75) that
extends over the Kirchhoff surface to reduce spectral leakage (∈ R#D=8 5 >A<×#D=8 5 >A<),
P is a padding matrix extending the uniform grid with a total of 2= points (= is set
to 15) for computing the upstream and downstream wave propagation, as well as
ensuring sufficient accuracy in the transform of the initial surface (∈ R2=×#D=8 5 >A<),
D is the DFT matrix (∈ R2=×2=), andH contains the derived Hankel functions of
the Kirchhoff surface, with entries along the diagonal for each wavenumber, for a
specified radial distance, A, from the surface at ' (∈ R2=×2=).

However, the above operator only supports one specified radial distance from the
cylindrical surface at ', and thus a linear combination ofC',A and proper selection
of streamwise points are required to construct a spherical arc. Thus, the linear
expression to construct the total Kirchhoff operator is then

C',d =

#�∑
8=1
CG8C',A8 , (4.13)

where G8 represents the streamwise location in the 100/� arc and A8 represents the
radial extent to which the Kirchhoff surface must propagate from surface ' to the
far-field arc for the respective streamwise location. Points are defined along the arc
from q = 100 − 160 with a resolution of Δq = 0.5.
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Statistics
The statistics we are interested in are contained within the cross-spectral density
(CSD) tensor, which may be found for the desired output space by multiplying the
resolvent equation by its complex conjugate and taking the expectation (Towne,
Schmidt, and Colonius, 2018)

〈yy∗〉 = 〈R̂ff ∗R̂∗〉 (4.14)

giving
SHH = R̂S 5 5 R̂

∗ (4.15)

whereSHH andS 5 5 are the CSD tensors of the response and the forcing respectively.

As mentioned earlier, this representation shows that if the forcing CSD tensor is
known, then the resolvent operator reconstructs the response statistics. However,
the forcing CSD is generally unknown. There are at least two potential avenues
for modeling this. The first is to directly model S 5 5 . To aid in such modeling
efforts, S 5 5 may be computed directly from full LES data (Towne, Bres, and Lele,
2017), or estimated from limited flow statistics Towne, Lozano-Durán, and Yang
(2020). A second approach is to modify the resolvent operator by supplementing the
governing linearized equations with an appropriately linearized turbulence model.
In Pickering, Rigas, Schmidt, et al. (2020), an eddy-viscosity model was considered,
and LES data was used to determine an optimal eddy viscosity field that would
align, insofar as possible, the modes of SHH with those of RR∗. They found this
to substantially reduce the magnitude of the off-diagonal terms of S 5 5 , in so far
as the near-field coherent structures were concerned, consequently simplifying the
number of terms that must be modeled.

In this study, we look to take both modeling approaches. We first utilize the
eddy-viscosity approximation of Pickering, Rigas, Schmidt, et al. (2020) and then
estimating a low-order approximation of the forcing CSD for the acoustic field. To
do the latter, we return to Equation 4.15 and expand the resolvent operator through
its singular value decomposition:

SHH = Û�V̂ ∗S 5 5 V̂ �Û ∗ (4.16)

and define a covariance matrix, SVV, as SVV = V ∗W 5S 5 5W 5V , where β is the
projection of the forcing upon the resolvent input modes, β = V ∗W 5 f . This gives

SHH = Û�SVV�Û
∗ (4.17)
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which can be rearranged to solve for the covariance matrix,

SVV = �−1U ∗WHSHHWHU�−1. (4.18)

In its current state, the covariancematrix is exact, maintaining a full size of the system
and permitting approximately 1011 degrees of freedom (i.e. SVV ∈ C5#G#A×5#G#A ).
To obtain a low-rank model of SVV from the LES data, we compute SVV with a
truncated set of = resolvent modes, Ũ ∈ C5#G#A×=, as,

S̃VV = �̃
−1
Ũ ∗WHSHHWHŨ �̃

−1
. (4.19)

Thereby reducing the size of the covariance matrix to = × =, in that the degrees of
freedom are now drastically reduced to $ (100 − 101).

With S̃VV, we may ask the following questions: (1) How well does S̃VV reconstruct
SHH in the truncated resolvent basis? (2) May S̃VV be further reduced (e.g. neglect
off-diagonal terms)? (3) Can S̃VV be modeled? (4) And can S̃VV reconstruct a more
general space (e.g. C = I)?

To address question (1), how well does S̃VV reconstruct SHH, the estimated response
CSD is computed by

S̃HH = ŨHS̃VVŨ
∗
H . (4.20)

The error between SHH and S̃HH may be assessed in a number of ways. For our
purposes, the quantity of utmost importance is the power spectral density (PSD) of
the acoustic field, which are the diagonal terms of SHH. When considering such
comparisons at individual frequencies and wavenumbers, a common comparison is
through the difference in sound pressure level in decibels, dB, computed as

ΔdB = 20log
(√

1
: − 1

diag(S̃HH − SHH)2
)
, (4.21)

where : is the number of realizations. However, this comparison can be somewhat
misleading as it does not take into account the regions of peak magnitude of acoustic
field. From an engineering point of view, regions of the largest magnitude are of far
greater importance for understanding how to reduce the peak noise of a turbulent
jet. For example, underpredicting (or overpredicting) the acoustic field by 20dB in
a region of the acoustic field that is measured to be 80dB, is of no consequence if
the region associated with 120dB is closely predicted. Considering this, we opt to
compare the PSD at distinct frequencies and wavenumbers visually, and only make
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quantitative comparisons of the overall sounds pressure level (OASPL):

$�(%! (q) = 10log10

( (C<0G∑
(C<8=

2
<<0G∑
−<<0G

diag(SHH (q, <, (C))
)
. (4.22)

To assess how well a more general space may be reconstructed with S̃VV, we use the
original forcing modes computed from the resolvent and recalculate the responses
with the response restriction matrix set to identity. This is computed as

Ũ@ = L
−1ṼH (4.23)

where U@ is the set of response modes of the full domain from the set of forcing
modes VH of the CH restricted domain. We can then estimate the full state CSD,

S̃@@ = Ũ@S̃VVŨ
∗
@ . (4.24)

However, at present, we only provide the modes Ũ@ associated in the near field,
as they give insight into active physical mechanisms, while omitting the associated
near-field statistics for future work.

Before advancing to the results, we must note that the above relations are valid when
U and V are orthogonal bases in the same space as y and f , respectively. However,
in the case of the near-field calculations, U is defined over a larger space than y
and a pseudo inverse must be constructed to find the least-square solution to above
projections. First, we truncate the output modes U to the output space G/� = [0,
30] and A/� = [5,6] in the pressure field and define the associated output matrix as
CI where I denotes the new restricted space. Applying CI to both the LES data
and resolvent modes gives the ensemble of realizations z and resolvent modes UI.
In addition to reducing the domain space, we also truncate the resolvent response
basis to a limited set of = modes, as discussed above, represented as ŨI. There are
now two important consequences of reducing the resolvent domain from CH to CI.
The first is a correction to the gain to the domain CI. Since both output domains
share identical input modes we have,

f2
8,H =

u∗
8,H
WHu

∗
8,H

v∗
8, 5
W 5 v

∗
8, 5

, f2
8,I =

u∗
8,I
WIu

∗
8,I

v∗
8, 5
W 5 v

∗
8, 5

, (4.25)

and the gain of the new domain is

f2
8,I = f

2
8,H

u∗
8,I
WIu

∗
8,I

u∗
8,H
WHu

∗
8,H

. (4.26)
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Figure 4.1: The first three resolvent modes of fluctuating pressure, @?′. Red and
blue contours vary from ± 50% of the maximum fluctuating pressure of each mode,
±0.5| |@?′ | |∞. " 9 = 1.5, (C = 0.26, < = 0.

Figure 4.2: Three realizations of the
LES pressure field at " 9 = 1.5, (C =
0.26, < = 0. Red and blue contours
vary from ± 50% of the maximum
fluctuating pressure of each mode,
±0.5| |@?′ | |∞.

Figure 4.3: Reconstructions of the
corresponding LES realizations us-
ing the 3-mode resolvent basis. Con-
tour values are identical to Figure 4.2.
" 9 = 1.5, (C = 0.26, < = 0.

The second is a loss of orthogonality, fortunately, we may still determine a least
squares fit of the data by computing theMoore-Penrose inverse ofW 1/2

I ŨI, (W 1/2
I ŨI)+ =

(Ũ ∗IWIŨI)−1Ũ ∗IW
1/2
I , and projecting it onto the CSD of I to estimate S̃VV

S̃VV = �̃
−1
I (W

1/2
I ŨI)+∗W 1/2

I SIIW
1/2
I (W 1/2

I ŨI)+�̃
−1
I . (4.27)
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Figure 4.4: Comparison of pressure RMS values by dB at A/� = 6 for the LES
ensemble and reconstructions in the resolvent basis using 3, 5, and 10 resolvent
modes.

4.3 Results
Near-field
Resolvent analysis and LES reconstructions

Webegin by providing detailed results for a single frequency and azimuthalwavenum-
ber pair of the " 9 = 1.5 jet using the RANS eddy-viscosity resolvent operator. Fig-
ure 4.1 presents the first three resolvent modes computed with a restricted acoustic
output domain (A/� = [5, 20] in the fluctuating pressure field) and recast in the full
domain byU@ = L

−1VH for " 9 = 1.5, (C = 0.26, and < = 0. The associated gain of
these modes, normalized by the first resolvent gain, are [1, 0.17, 0.15] (and slowly
decreasing with higher modes), indicating the first resolvent mode has at least six
times the amplification to its associated forcing than the following resolvent modes.

The resolvent response modes show a particular pattern of acoustic beams. For the
first mode there is a single, energetic acoustic beam, propagating at a shallow angle
to the jet axis. The first suboptimal mode consists of two acoustic beams, similar
to what was found by Jeun, Nichols, and Jovanović (2016). This pattern continues
to the next suboptimal mode, with three beams located at the perimeter of the first
suboptimal. Although not shown, this behavior continues for further suboptimal
modes.

The resolvent response modes are now be used to determine the covariance matrix
S̃VV. However, before directly computing S̃VV, we first provide an example of
individual reconstructions of the LES realizations. To do this we return to Equation
4.27

S̃VV = �̃
−1
I Ũ

+∗
I WISIIWIŨ

+
I �̃
−1
I . (4.28)
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Figure 4.5: RMS of LES pressure fluctuations of the " 9 = 1.5 jet at radial surface
A/� = 6 from (C = [0, 1] and G/� = [0, 30] for three azimuthal wavenumbers,
< = [0, 2].

Figure 4.6: RMS of resolvent reconstructions of the " 9 = 1.5 jet, without an
eddy-viscosity model (left) and with a RANS eddy-viscosity model (right), at radial
surface A/� = 6 from (C = [0, 1] and G/� = [0, 30] for three azimuthal wavenum-
bers, < = [0, 2], from left to right and using = = 1, 3, 5, 10, 20 modes from top to
bottom. Contours and axes mirror those of Figure 4.5.

Expanding SII to zz∗ shows that S̃VV is the scaled covariance of the ensemble of
output projection coefficients, α̃ = Ũ+∗I WIz of the LES data in the resolvent basis.
Figure 4.2 and 4.3 provide three independent LES realizations (i.e. q) and their
reconstructions (i.e. q̃ = Ũ@α̃) in a 3-mode truncated resolvent basis.

While the resolvent gain is only optimal over the region A/� = [5 − 20], the three
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Figure 4.7: RMS of LES pressure fluctuations of the " 9 = 0.9 jet at radial surface
A/� = 6 from (C = [0, 1] and G/� = [0, 30] for three azimuthal wavenumbers,
< = [0, 2].

Figure 4.8: RMS of resolvent reconstructions of the " 9 = 0.9 jet, without an
eddy-viscosity model (left) and with a RANS eddy-viscosity model (right), at radial
surface A/� = 6 from (C = [0, 1] and G/� = [0, 30] for three azimuthal wavenum-
bers, < = [0, 2], from left to right and using = = 1, 3, 5, 10, 20 modes from top to
bottom. Contours and axes mirror those of Figure 4.7.

resolvent modes are able to accurately reconstruct the different radiation patterns ev-
ident in the realizations. Clearly there is constructive and destructive reinforcement
amongst the three resolvent modes in order to produce the LES realizations.

To quantitatively assess how well the resolvent modes reconstruct the LES realiza-
tions, we compute and compare the RMS pressure values by relative dB at A/� = 6
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in Figure 4.4, again for (C = 0.26, < = 0 over all : = 153 realizations. In addition
to the 3 resolvent mode set, results are also shown for 5 and 10 mode sets. With just
three modes we see that the peak directivity is well captured, with minor improve-
ments (and diminishing returns) in the off-peak directivity with increasing numbers
of modes.

Eddy-viscosity model
We now expand our analysis to Strouhal numbers ranging from 0 to 1 and azimuthal
wavenumbers 0-2 and assess the overall ability of the truncated resolvent basis to
reconstruct the acoustic field, as well as determine the utility of implementing an
eddy-viscosity model for noise modeling. We continue comparisons of the LES
data and resolvent reconstructions by RMS pressure fluctuations at A/� = 6, which
are now plotted over a range of frequencies ((C = [0, 1]) and azimuthal modes
(< = [0 − 2]) in Figure 4.5. In Figure 4.6, the resolvent-basis reconstructions of
the pressure fluctuations are shown for rank 1, 3, 5, 10, and 20. The left and right
columns show resolvent reconstructions without and with the eddy viscosity model,
respectively. For the computations without eddy viscosity, a constant turbulent
Reynolds number ('4) = 3 × 104) is used.

A visual comparison between these columns shows the clear advantage that the
eddy-viscosity model provides, especially when two or more resolvent modes are
retained. Interestingly, the rank-1 model appears to be quite similar both with and
without eddy viscosity, which is likely due to the Kelvin-Helmholtz mechanism that
dominates (i.e. as the leading resolvent mode) much of the frequency-wavenumber
space considered (Pickering, Rigas, Nogueira, et al., 2020), and which is less
sensitive to the eddy-viscosity model than the sub-optimal modes associated with
the Orr-mechanism (Pickering, Rigas, Schmidt, et al., 2020). The rank-1 results are
also similar to those of Sinha et al. (Sinha, Rodríguez, et al., 2014) who computed
a rank-1 model via the parabolized stability equations and projected onto the first
SPOD-mode at each (C − < pair. However, we show here that once additional
modes are included, the reconstructions are substantially improved and the eddy-
viscosity model shows superior performance; the 20-mode, eddy-viscosity model
is indistinguishable from the LES for all frequencies and azimuthal modes, while
even the 3-modes model is quantitatively accurate for < = 0 and < = 1.

In Figures 4.7 and 4.8, we plot the LES and reconstructed pressure fluctuations,
respectively, for the " 9 = 0.9 jet. We see many similar behaviors to the " 9 = 1.5
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Figure 4.9: Schematic of the far-field arc at 100� from the nozzle exit. The angle
along the arc is defined as q, with 0 on the upstream axis and 180 on the downstream
axis. The red portion of the arc denotes the region of interest, q = 100−160 and the
acoustic beam presented is the first resolvent mode for " 9 = 1.5, (C = 0.26, < = 0,
found for the far-field region.

case, most notably the superiority of the eddy-viscosity resolvent modes, which
achieve nearly complete reconstruction of the full LES pressure with just 20 modes.
However, it is also apparent that a larger number of modes is required to accurately
reconstruct the modes compared to the" 9 = 1.5 case. For example, about 10modes
are required to obtain a reasonable quantitative match (compared to just 3 modes at
" 9 = 1.5). This is consistent with multiple past observations where the " 9 = 0.9
jet has been found to require many modes to reconstruct the acoustic field (Freund
and Colonius, 2009; Towne, Colonius, et al., 2015).

4.4 Far-field Results
We now extend the analysis for both jets to the far-field at 100� from the nozzle
(using the eddy-viscosity model), and aim to find the modes which are optimal in the
far-field. The far-field is defined as an arc 100� from the nozzle, with locations on
the arc defined by an angle, q, where q = 0 lies on the axis upstream, and q = 180
lies on the axis downstream. For reference, Figure 4.9 presents a schematic of the
far-field arc, including the region of interest denoted by red and an example of a the
first resolvent mode, propagating throughout the domain, for " 9 = 1.5 at (C = 0.26
and < = 0.

We now proceed by investigating the first three resolvent modes for " 9 = 1.5
and " 9 = 0.9 at (C = 0.26 and < = 0. Figure 4.10 (a) and (b) presents the
magnitude of the first three resolvent modes as this representation provides a clear
description of the acoustic beams. We observe for both jets, that mode 1 possesses
one acoustic beam, peaking at about q = 150, while modes 2 and 3, possess
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two and three acoustic beams, respectively, with the largest of the peaks located
further upstream with increasing mode number (this progression in beam number
and location continue in the higher mode numbers. One notable difference between
the " 9 = 1.5 and " 9 = 0.9 is width and spacing of the modes. For the " 9 = 1.5
jet, appreciable values of the modes are between q = 110− 160, while the " 9 = 0.9
jet has values in extending much further upstream and somewhat downstream as
well. Additionally, Figure 4.10 (a) and (b) also presents the magnitude of modes
found via spectral proper orthogonal decomposition (SPOD). Such modes are useful
in determining the optimal decomposition of second-order, space-time statistics
(Towne, Schmidt, and Colonius, 2018), and therefore, provide a useful comparison
to resolvent modes. In fact, when the forcing CSD is uncorrelated, resolvent and
SPODmodes are identical, however, this is generally not the case for turbulent flows.
Comparing the SPOD and resolvent modes shows significant agreement amongst
all three modes for both jets. The amplitudes and exact locations vary slightly, but
such close agreement suggests that an uncorrelated model may suffice.

Just as computed in Figure 4.1, Figure 4.11 presents the near-field solution that
gives rise to the far-field modes for the " 9 = 1.5 case. In comparing Figures
4.1 and 4.11 we can see that they are nearly indistinguishable, with the greatest
difference found near the axis. In Figure 4.1 there is energy along the axis after the
beam detaches from the hydrodynamic wavepacket for approximately ten diameters
downstream, while in Figure 4.11 there is no further energy after detaching from
the axis. This shows that while solving for resolvent modes at closer locations (i.e.
A/� = 5), portions of the hydrodynamic component may still affect the result, while
computations at truly acoustic regions (i.e. d/� = 100) entirely eliminate any
structures that do not carry acoustic significance.

We now investigate how well the computed resolvent modes can reconstruct the
RMS of the far-field region across (C ∈ [0.1, 1] and < = [0, 1, 2]. Figure 4.12
presents the averaged RMS, over 153 Kirchhoff surface realizations, for the men-
tioned wavenumber and frequency space of the " 9 = 1.5 jet. This Figure is, as
expected, quite similar to that of 4.5, with a similar distribution amongst frequen-
cies and wavenumbers. The greatest difference between the two is an order of
magnitude drop after propagating nearly 100 diameters. We can observe that for all
wavenumbers, and most frequencies, we find the peak values near angles ranging
from q = [140 − 155], indicating that this region is the largest, and therefore, most
important region for modeling. We also find that the < = 0 wavenumber provides
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Figure 4.10: Magnitude of the first three resolvent (left) and SPOD (right) modes
computed on the far-field arc for the " 9 = 1.5 (top) and " 9 = 0.9 (bottom) jet at
(C = 0.26 and < = 0.
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Figure 4.11: The near-field of three resolvent modes of fluctuating pressure, @?′,
computed considering the 100� are from q = 100 − 160 . Red and blue contours
vary from ± 50% of the maximum fluctuating pressure of each mode, ±0.5| |@?′ | |∞.
" 9 = 1.5, (C = 0.26, < = 0.

amplitudes that are significantly larger as the contour for < = 0 is four and ten times
larger than the contour levels of < = 1 and < = 2, respectively.

We present reconstructions using = resolvent modes, at each wavenumber and across
frequencies, in Figure 4.13. For each of the wavenumbers, the rank-1 resolvent fit
provides substantial agreement between the LES, reconstructing all the loudest
features. Increasing the rank can capture nearly all the energy for each of the
azimuthal wavenumbers, however, the increase in agreement with rank is rather
gradual and serves largely to reconcile the quieter regions of the flow. Considering
the loud regions are of greatest importance for reducing jet noise, we will proceed
in the next section with a fit/model of the jet designed on the necessary forcing
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Figure 4.12: RMS of far-field from propagating the LES pressure fluctuations of the
" 9 = 1.5 jet at radial surface A/� = 6 from (C = [0, 1] and G/� = [0, 30] via the
Kirchhoff surface for three azimuthal wavenumbers, < = [0, 2].
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Figure 4.13: RMS of resolvent reconstruc-
tions of the " 9 = 1.5 jet, at d/� = 100
from q = [100−160], over frequencies, (C =
[0, 1], azimuthal wavenumbers, < = [0, 2],
(from left to right) and using = = 1, 2, 3, 5
modes (from top to bottom). Contours and
axes mirror those of Figure 4.12.
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Figure 4.14: RMS of the simple resol-
vent model, presented in §4.4, of the
" 9 = 1.5 jet. The presentation mirrors
that of Figure 4.13.

required to, at minimum, model the = = 1 reconstruction.

We now provide the same analysis of the far-field for the " 9 = 0.9 case. Figure
4.15 provides the 100� far-field RMS found via the Kirchhoff realizations. Again,
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Figure 4.15: RMS of far-field from propagating the LES pressure fluctuations of the
" 9 = 0.9 jet at radial surface A/� = 6 from (C = [0, 1] and G/� = [0, 30] via the
Kirchhoff surface for three azimuthal wavenumbers, < = [0, 2].
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Figure 4.16: RMS of resolvent reconstruc-
tions of the " 9 = 0.9 jet, at d/� = 100
from q = [100−160], over frequencies, (C =
[0, 1], azimuthal wavenumbers, < = [0, 2],
(from left to right) and using = = 1, 2, 3, 5
modes (from top to bottom). Contours and
axes mirror those of Figure 4.15.
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Figure 4.17: RMS of the simple resol-
vent model, presented in §4.4, of the
" 9 = 0.9 jet. The presentation mirrors
that of Figure 4.16.

the Figure is relatively similar to that of the near-field RMS, shown in Figure 4.7,
with values approximately an order of magnitude smaller. Relative to each jet’s
peak noise, the acoustic field appears to possess substantial noise at smaller angles
of q when compared with the " 9 = 1.5 jet, particularly for the higher azimuthal
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wavenumbers. Similar to the " 9 = 1.5 jet, we also find the < = 0 component to be
the loudest, about five-fold compared to the < = 1 case and an order of magnitude
when compared to < = 2. Granted, the locations of the peaks are not identical,
thus each wavenumber may have dominance at certain angles in terms of acoustic
energy.

Figure 4.16 provides the reconstructions using = resolvent modes, at each wavenum-
ber and across frequencies. Interestingly, when compared to our results in the
near-field, the rank-1 resolvent model nearly reconstructs the < = 0 RMS, with
only negligible improvements with increasing rank. The same is not true for the
higher azimuthal wavenumbers. For both < = 1 and < = 2, the rank-1 reconstruc-
tion provides a foundation for the regions of highest acoustic energy, but additional
modes are required to reconstruct the observed RMS. This higher-rank behavior is
not entirely unexpected. From Figure 4.15, we can see that both < = 1 and < = 2
are noisy when compared to < = 0 and are not nearly as compact in space. Both
of these observations suggest these azimuthal fields are of higher rank, requiring
many modes to reconstruct them. This is further supported by the reconstructions
of < = 1 and < = 2. The rank-1 reconstruction presents the "single-beam" solu-
tion, while the addition of subsequent modes shows a superposition of multi-beam
structures that appear as sloping lines on the figure, and a complete jet model must
consider these suboptimal modes. However, and similar to the " 9 = 1.5 case, the
loudest regions are of greatest importance for reducing jet noise, and we proceed
with a simple model accounting for the forcing energy required to best fit the rank-1
reconstruction.

A simple fit/model
Considering we may reconstruct the far-field acoustics at low-rank, we ask whether
we can now define a simple, yet sufficient, forcing model. One approach would be
to propose a form of the forcing cross-spectral density tensor to which projecting
this form onto the resolvent input modes would result in the reduced order matrix
S̃VV. However, despite many efforts to define such a forcing CSD (Towne, Bres, and
Lele, 2017), there does not yet exist a general form for estimating the forcing CSD
S 5 5 . Therefore, we continue by investigating the resulting structure of the estimated
S̃VV and attempt to determine simple forms of the associated values.

The estimated covariance matrix S̃VV presents the least square reconstruction of
the observed data and contains the amplitudes and correlations required to force



106

each resolvent mode. Where the forcings are uncorrelated, the estimated S̃VV
matrix becomes diagonal and only = coefficients (albeit at each wavenumber and
frequency) require modeling. However, even if the forcing is uncorrelated, minor
errors or discrepancies in the data, data-processing, computation of resolvent mode,
etc., give a full S̃VV matrix. Thus, we explore whether neglecting off-diagonal terms,
but note that there are no guarantees for success. Further, as we increase rank, the
statistical uncertainty in the fits becomes greater, reducing physical interpretability.

To limit uncertainty and prevent over-fitting, we take the assumption that the forcing
is uncorrelated (i.e. diagonal) and that the projection of the data with the first
resolvent mode,

S̃VV = �−1
1 U

∗
1SHHU1�

−1
1 = _V, (4.29)

possesses the lowest uncertainty. These values for the two jets and three azimuthal
wavenumbers are shown in Figure 4.18. For the " 9 = 1.5 jet, we see that the
forcing amplitudes for < = 0 and < = 1 fall upon lines of constant slope for the
most acoustically significant frequency ranges, (C = 0.1 − 0.8. The < = 2 data
similarly collapse to a line of constant slope, however, the trend is not nearly as
clear. Similar observations also hold for the " 9 = 0.9 jet. We also stress it that
these curves are not only found via projections with the data but also through the
resolvent gains, Σ. Including the gains is crucial to collapsing the observed trends.

We now look to fit the data with simple curves of the form,

_̃<,l = 0<(C
1< , (4.30)

where 0< provides an amplitude of the curve and 1< provides the power of the
curve. For the nonzero azimuthal wavenumbers, the data represent the sum of both
the clockwise (<) and counter-clockwise (−<) about the round jet, such that 0<
represents 0+< + 0−<, or 20+<, since 0+< = 0−<, as either rotation about the jet is
of equal probability. The power term, 1< is unaffected by this symmetry. Figure
4.18 provides the lines of best fit, where the fits are computed over the acoustically
relevant region of (C = 0.13 − 0.7 for the " 9 = 1.5 and (C = 0.22 − 1 for the
" 9 = 0.9. We find the difference in the frequency ranges by adjusting the Strouhal
number by Mach number, (C0.9 = (C1.5 ∗ 1.5/0.9, meaning each range is associated
with the same range of acoustic Strouhal number, (C2∞ . The upper bound for the
" 9 = 0.9 case extends to (C = 1.17, however, we cap the upper bound to (C = 1 as
done throughout this chapter.
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" 9 = 1.5 " 9 = 0.9

Param. < = 0 < = 1 < = 2 < = 0 < = 1 < = 2
0< (×10−11) 71.0 38.9 46.6 2.65 1.38 0.61

1< −2.58 −1.7 −1.76 −5.80 −3.77 −3.13

Table 4.1: Fit parameters used for the " 9 = 1.5 and " 9 = 0.9 jets shown in Figure
4.18. Parameters 0< are provided on the order of 10−11.

" 9 = 1.5 " 9 = 0.9

10-1 100

10-10

10-5

10-1 100

10-10

10-5

Figure 4.18: Values of the reconstruction projection coefficient, _V, of the first
resolvent mode for the azimuthal wavenumbers < = 0 − 2 and their associated fits,
the parameters of which are provided in Table 4.1.

Table 4.1 provides the determined coefficients for each jet and wavenumber. We do
not have any physical meaning to suggest for these terms, other than the power terms
show a steady decrease in energy as frequency increases (and thus the length scales
of the structures decrease). We suspect we may find similar curves via projection of
the resolvent forcingmodes with the turbulent kinetic energy or othermean statistics,
however, we leave this for future work.

To determine how well such curves predict the data, we use the fitted curves to
compute,

S̃HH (q) = _̃<,lŨΣ2Ũ ∗, (4.31)

where Ũ represents the truncated resolvent basis to rank-=. Additionally, as the low-
frequency regions are not acoustically important, nor can we expect our methods to
have accurately captured such large structures in the finite domain used, we use the
piece-wise function

_̃<,l = 0<(C
1< for (C > (C<8= (4.32)

_̃<,l = 0<(C
1<
<8=

for (C ≤ (C<8=, (4.33)

where (C<8= = 0.13 and 0.22 for " 9 = 1.5 and " 9 = 0.9, respectively. Figure
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4.14 and 4.17 present the predicted RMS using = = [1, 2, 3, 5] modes for the three
azimuthal wavenumbers and two turbulent jets.

For the " 9 = 1.5, the rank-1 approximation presents a close approximation of
the reconstructions of 4.13, and, since these reconstructions closely agree with the
overall RMS at rank-1, so too do the predictions represent similar features and
magnitudes as the overall RMS at rank-1. We can say the same for the " 9 = 0.9
case, except for the < = 2 case which does not agree at low-frequencies, however,
we suspect such frequencies to be invalid for our approach.

Proceeding to the highermode predictions of the" 9 = 1.5 jet we see little difference,
particularly at the loudest regions of the RMS plots, with increases only seen at
smaller angles. This lack of change from the rank-1 prediction shows that the
forcing amplitude is underpredicted for resolvent modes = > 1 by the model,
meaning that the actual forcing is greater than _̃<,lf2

= for = > 1. Physically, these
observations aligns with differences found between two mechanisms in turbulent
jets, the KH and Orr mechanisms (Pickering, Rigas, Nogueira, et al., 2020). The
KH dominates the optimal resolvent modes at the wavenumbers and frequencies
considered here, however, a family of Orr-type modes dominate the = > 1 region of
the spectrum, and the main consequence, as far as we are concerned in this work,
is a distinct change in the spatial location of the associated forcing modes. For KH
modes, the forcing mode is found localized near the nozzle, while forcing modes
associated with the Orr-mechanism are located much further downstream where the
jet is significantly more energetic. Thus, this difference necessitates knowledge of
the relative magnitudes associated with each forcing mechanism. In the very simple
approach taken here, it would require a calibration of = = 2, however, the uncertainty
in such a fit increases drastically, and due to the rather close fits of the rank-1 model,
we leave this topic for future work and continue with the rank-1 model.

An analogous difficulty with = > 1 is also observed for the " 9 = 0.9 jet. For
< = 0, the forcing of the suboptimal, Orr-type modes is over predicted, contrary
to the under prediction for the " 9 = 1.5 jet. This could result from the acoustic
efficiency of the KH mechanism drastically decreasing, while the Orr-type modes
maintain their ubiquitous presence in the turbulent jet. Such a finding underscores
the necessity to determine a forcing model that represents both KH and Orr modes,
as their relative energies differ amongst varied flow conditions.

With the rank-1 prediction in hand, we conclude by computing the quantity that
underpins our motivation in this work, the overall sound pressure level (OASPL).
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Figure 4.19: OASPL of the " 9 = 1.5 (left) and " 9 = 0.9 (right) turbulent jets
at 100� from the nozzle over the arc q. The solid black line denotes the total
OASPL from the FW-H surface of the LES, while the dashed black line presents
the contribution to the OASPL from only azimuthal wavenumber < = 0. Blue lines
represent approximations, where the dotted line is the KS considering 20 azimuthal
modes over (C = 0.1 − 1, the dashed line considers only < = 0, and the solid line
gives the < = 0 resolvent estimation.

Figure 4.19 presents multiple calculations of the OASPL from both jets. For the
" 9 = 1.5 case, data from a FW-H surface coupled directly with the LES simulation
is available (data for the " 9 = 0.9 case is not) for comparison, and the black lines
represent this LES data, with the solid line denoting the total OASPL, at 100�
from the nozzle, and the dashed line giving the contributions from only the < = 0
component. The latter component is what we wish to compare for the remainder
of the paper for two reasons. First, the difference between the total and < = 0
FW-H OASPLs is 2dB at peak noise from q = 130 − 160. Second, the previous
reconstructions and model show that the higher azimuthal wavenumbers require
multiple modes to be accurate. Thus, we only compare the < = 0 component as it
both represents most of the peak acoustic energy and may be reasonably represented
at rank-1.

The blue lines in Figure 4.19 represent approximations of the KS surface and the
resolventmodel for both jets. Comparisons of the< = 0 component for the" 9 = 1.5
jet show the KS surface consistently over predicting the FW-H values by 2dB. The
rank-1, < = 0 resolvent model, trained on the KS surface, which alternatively could
have been trained of the FW-H data, aligns fairly well with the KS curve at the
loudest angles. The greatest difference is that the resolvent model peaks at about 5
degrees higher than the LES data. Interestingly, a similar experiment and simulation
in Brès, Ham, et al. (2017) disagreed by the same angle. Although 100� data from
the experiment is not available, projecting the resolvent modes onto this data would
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likely result in much greater alignment, as shifting the LES data by 5 degrees results
in a significantly improved estimation. However, since the latter is a loosely justified
extrapolation of our methods, we do not present this result.

We see similar behavior between the KS surface and the resolvent model for the
transonic case. The dashed line in Figure 4.19 represents the total OASPL computed
by theKS surfaces for reference and the< = 0 onlyOASPL shows aminor difference
of 0.5dB at peak angles. The rank-1< = 0 resolvent model again presents agreement
of the peak OASPL to within 2dB. We stress that this result for the " 9 = 0.9 jet
is rather surprising as many previous studies have found the acoustic field requires
many modes to agree within 2dB (Freund and Colonius, 2009; Towne, Colonius, et
al., 2015), showing that the eddy-viscosity model included in our resolvent analysis
significantly reduces the rank of the acoustic jet problem. Further, we note that this
transonic jet has been extensively verified by experimental data in the near-field and
at d = 50�, and, although we extend the results to 100�, the peak angles of the KS
and the resolvent model are closely aligned when compared to the " 9 = 1.5 case.

4.5 Conclusions
We extended resolvent analysis to that of an acoustic analogy relating the near-field
forcing to both the near-field and far-field acoustics, the latter being 100 diameters
from the nozzle. Leveraging the availability of a LES database, we examined
resolvent-based reconstructions of the acoustic near- and far-field of round, turbulent
" 9 = 1.5 and " 9 = 0.9 jets. We represented the forcing cross-spectral density
matrix with a truncated set of resolvent modes and approximate the amplitudes of
the modes with best-fit expansion coefficients of realizations from the LES acoustic
field. We found that relatively low-rank models comprising as few as one resolvent
mode can accurately reconstruct the acoustic field for the first two azimuthal modes
for a " 9 = 1.5 jet and the < = 0 azimuthal mode for the " 9 = 0.9 jet, whereas
about five modes were required for the higher azimuthal modes (i.e. < = 2 and
< = 1, 2 for " 9 = 1.5 and " 9 = 0.9, respectively). Based on the relative increase
in radiation efficiency of the (low-rank) Kelvin-Helmholtz response of the jet, it is
perhaps not surprising that we can capture the higher Mach number case at lower
rank. In both jets, the use of an eddy-viscosity model in the resolvent formulation
led to (vastly) superior results compared to a fixed Reynolds number.

Based on the ability of the rank-1 reconstructions to describe much of the RMS
energy, we investigated a simple model to collapse the forcing coefficients to one
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scaling function per wavenumber (and Mach number). We found that a power law
representation, with only a scaling and a power value, suffices for describing the
forcing coefficients for the optimal resolvent mode. Fortunately, the first resolvent
mode contains much of the acoustic energy, and reductions of the gain for this
specific mode (related to the KH mechanism) are likely to provide the greatest
reductions in the peak noise of the acoustic field. However, the model does not
accurately account for the suboptimal modes, under predicting their role in the
" 9 = 1.5 jet and over predicting them for the " 9 = 0.9 jet (for at least the < = 0
wavenumber).

Regardless of this difficulty, the rank-1 < = 0 resolvent models could estimate the
peak noise to within 2dB for both the " 9 = 1.5 and " 9 = 0.9 jets. Further, the
ability of the resolvent basis to describe much of the acoustic field with only a
handful of modes across multiple Mach numbers, a large range of frequencies, and
the acoustically dominant azimuthal wavenumbers is promising. This shows that the
resolvent framework already contains the appropriate acoustic functions to describe
jet noise. The next step must then be to generalize the forcing coefficients and tie
them to other known statistics from RANS calculations, such as the turbulent kinetic
energy or the Reynolds stresses.

Acknowledgments
The authors would like to thank André Cavalieri, Oliver Schmidt, and Georgios
Rigas for many productive discussions on topics related to this paper. This research
was supported by a grant from the Office of Naval Research (grant No. N00014-
16-1-2445) with Dr. StevenMartens as programmanager. E.P. was supported by the
Department of Defense (DoD) through the National Defense Science & Engineering
Graduate Fellowship (NDSEG) Program. The LES study was performed at Cas-
cade Technologies, with support from ONR and NAVAIR SBIR project, under the
supervision of Dr. John T. Spyropoulos. The main LES calculations were carried
out on DoD HPC systems in ERDC DSRC.



112

C h a p t e r 5

CONCLUSIONS

We made advancements on several components of the resolvent-based modeling
framework of turbulent flow design and jet noise prediction as displayed in Figure
1.1. Detailed conclusions on each of these areas can be found in the previous
sections of this report. We provide some highlights below.

In Chapter 2 we proposed and validated an extension of the resolvent approach
that includes an eddy-viscosity model. The eddy viscosity models a portion of the
stochastic forcing associated with the effect of nonlinear interactions on coherent
structures. We developed a novel data-driven technique to determine an optimal
eddy-viscosity field, defined by attempting to match the theoretical highest-gain
resolvent response to the corresponding largest SPODmode observed from the LES
data. Through a corresponding theoretical connection between SPOD and resolvent,
we show that matching these structures corresponds to removing complexity (i.e.
correlations) from the required stochastic forcing model. This implies that the
resulting eddy-viscosity-amended resolvent computation could predict the dominant
turbulent structure based only on the mean flow field, the eddy-viscosity model, and
a frequency-dependent amplitude of forcing. We showed that the eddy-viscosity
fields substantially improve the agreement between resolvent-predicted and SPOD-
observed structures. Most surprisingly, we found predictions based on an a priori
prediction of the eddy-viscosity fields from RANS was nearly as effective as the
optimal eddy-viscosity model.

In Chapter 3, we used SPOD and global, linear resolvent analysis to distill coherent
turbulent structures for round jets over a range of Mach numbers from subsonic to
supersonic and investigate, in detail, three turbulent jet mechanisms. Both tech-
niques revealed that three dominant amplification mechanisms exist in the turbulent
jet: the well known Kelvin-Helmholtz (KH) instability, an Orr-type response (asso-
ciated with the tilting of wavefronts against mean shear) and the lift-up mechanism
(associated with streaks). The KH-type instability is of low-rank type, meaning
that the leading, highest gain mode is well separated from sub-optimal, lower gain
modes, and is readily forced by disturbances near the nozzle exit. It is active, over a
range of frequencies and azimuthal wavenumbers, in the initial shear-layer, whereas
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Orr-type waves dominate the region downstream of the potential core. The Orr re-
sponse is not low rank and relies on distributed forcing from turbulence throughout
the jet. In the initial shear layer region, Orr-type waves are also present but not
readily observed as they are swamped by the high-gain KH waves. An exception is
the axisymmetric response at low frequencies where the Orr modes again become
the dominant mechanism. The lift-up mechanism becomes apparent when investi-
gating the lower-frequency limits for nonzero azimuthal wavenumbers, where the
lift-up effect generates elongated streaks at a variety of azimuthal wavenumbers.
The lift-up mechanism has long been understood as an instability mechanism in
boundary layers, but has only recently received attention in jets. Our global analysis
is the first to clearly identify it both as a fundamental linear amplification mecha-
nism and through its presence, as coherent structures, in the LES data. The analysis
serves to unify many past observations of streaky structures in jets, and to provide
a mechanistic understanding of their formation and use for future noise control.

In Chapter 4 we extended resolvent analysis to that of an acoustic analogy that re-
lates the near-field forcing to the far-field acoustics 100 diameters from the nozzle.
Leveraging the availability of a LES database, we produce resolvent-based recon-
structions of the acoustic field of round, turbulent " 9 = 1.5 and " 9 = 0.9 jets. We
represent the forcing cross-spectral density matrix with a truncated set of resolvent
modes and approximated the amplitudes of the modes with best-fit expansion coeffi-
cients of realizations from the observed LES acoustic field. We found that low-rank
models comprising as few as one resolvent mode can accurately reconstruct the
acoustic far-field for the first two azimuthal modes for the " 9 = 1.5 jet, whereas
about five modes were required for the higher azimuthal mode (< = 2). For the
transonic jet, " 9 = 0.9, a rank-1 model was sufficient for < = 0, while < = 1, 2
required significantly more modes to reconstruct. We then find the necessary forc-
ing amplitudes required for reconstructing the acoustic field and suggest avenues for
modeling this forcing. Finally, we present a simple function, using only two fitting
parameters, that results in a rank-1 resolvent model that agrees to withing 2dB of
the peak acoustic region for both jets. The ability of the resolvent basis to describe
much of the acoustic field with a substantially limited set of modes across multiple
Mach numbers, frequencies, and azimuthal wavenumbers is promising. This shows
that the resolvent framework already contains the appropriate acoustic functions to
describe jet noise. The next step must then be to generalize the correlations between
modes such that they represent the complete effect of turbulence on noise generation.
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Overall, the research shows that the resolvent-based framework is a viable approach
for RANS-based prediction of turbulent jets, but not limited to jets, and their
associated noise. We showed that the resolvent approach accurately predicts the
observed structures across a range of jet operating conditions. As a predictive tool,
the stochastic forcing of these structures remains a pacing item. While promising
results were obtained for the " = 1.5 and " 9 = 0.9 circular jet by retaining only
a few acoustic resolvent modes, much work remains to fit model coefficients to a
range of jet operating conditions and nozzles, and to assess the universality of the
resulting noise predictions - and application to other flow fields. Besides prediction,
the modeling framework will be essential for future design efforts. Indeed, RANS-
based noise models would enable drag, noise, and mixing efficiency control studies
at a computational cost far lower than corresponding LES techniques.

5.1 Future work
Although the eddy-viscosity approach provided useful results, there remains an open
question “What exact turbulence model should be used for resolvent analysis?” For
example, the eddy-viscosity model used here is based on the Boussinesq hypothesis,
which for almost all turbulent flows can not be verified (Schmitt, 2007). Therefore,
there may be a better, or more rigorously defined, model that exists. One approach to
find such amodel would be to use the presented optimization framework, but assume
no form of the eddy-viscosity model and learn the partial differential equation
best suited to represent the turbulence quantities. Additionally, the optimization
presented here is general for altering any mean-flow quantity, thus use of the same
optimization framework requires only changes to the gradient and cost function.

The identification of the lift-upmechanism in jets provides an exciting opportunity as
amechanism for noise control andwork into its potential, either actively or passively,
appears promising. Although streaks have only recently been characterized in
turbulent jets, their presence is now much clearer while reviewing the literature.
Considering past experiments (Citriniti and George, 2000) and simulations (Freund
and Colonius, 2009) show signatures of streaks in the natural jet and experiments
imposing streak-like disturbances that give rise to acoustic bursts (Wu and Huerre,
2009), it is now clear, more or less, that current jet noise reduction techniques,
such as chevrons, unknowingly leverage the lift-up mechanism to induced streaks
that increase mean-flow spreading and reduce noise (Rigas et al. (2019) specifically
identified streaks in the mean-flow of LES data of a chevron jet). Further, past
experimental studies in chevrons (Bridges and Brown, 2004) found that not all
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azimuthal configurations lead to the reduction (or increases) of noise, while other
work in mixing layers has similarly found that the relationship between streaks
and the KH mechanism depends on each mechanism’s respective wavenumbers
(Marant and Cossu, 2018). Therefore, establishing connections between these
mechanisms may prove fruitful for noise reduction. One data-driven approach could
lie in performing higher-order statistics to identify energetically relevant triadic
interactions between these mechanisms via a cross-bispectral analysis of the flow as
described by Schmidt (2020).

Tomake resolventmodels truly predictive, the amplitudes of the resolventmodes and
their correlations need to be determined independent of verified “truth” statistics.
Therefore, it is imperative that we pursue general strategies andmodels of the forcing
coefficients. As insinuated byFigure 1.1, one approach could be that of aRANSdata-
driven optimization that couples linear theory with RANS data (that is independent
of verified data) to learn the resolvent forcing coefficients. This could be done by
matching the first-order statistics available from RANS computations, such as the
turbulent kinetic energy (TKE) field, with structures found from resolvent analysis.
If successful, such an approach could produce consistent estimates for other RANS
computed statistics like the Reynolds stresses but can also predict quantities that
are not directly available from RANS such as near-field pressure fluctuations and
far-field sound. Further, this approach not only would provide averaged statistics
but also give information about all the relevant coherent structures and their relative
effects in the flow.

One could also see this future work as another approach for improving RANS
with Machine learning techniques (Duraisamy, Iaccarino, and Xiao, 2019), yet
is unique in leveraging resolvent analysis in such a large parameter space. An
iterative coupling of RANS and accurate representations of the fluctuating fields
(i.e. resolvent modes) may allow for an improved and self-consistent RANS model.
Further, given that linear models are ideal for posing optimizations and controlling
engineering quantities, such a coupling is attractive for a truly predictive reduced
order-model with a capacity for informing design. Previous studies have coupled
RANS with linear models, however, its generality and application to flows with
broadband response or high-rank behavior is lacking. Moarref and Jovanović (2012)
coupled RANS and linear modeling to propagate the influence of linear responses
to RANS via the turbulent viscosity hypothesis. In a similar vein, Yim, Meliga,
and Gallaire (2019) coupled a harmonically forced, quasi-linear resolvent analysis
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with RANS equations, using an eddy viscosity model, determined from resolvent
modes, to link coherent and incoherent perturbation dynamics. Presenting a similar
approach for flows with broadband responses would likely have a substantial impact
in the field.
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A p p e n d i x A

OPTIMAL EDDY VISCOSITY FOR RESOLVENT-BASED
MODELS OF COHERENT STRUCTURES IN TURBULENT JETS

A.1 Linear damping term
Besides the studied eddy-viscosity models, we also investigated the impact of a
linear damping term, which is equivalent to a finite-time-horizon resolvent analysis
introduced by Jovanović (2004), recently studied by Yeh and Taira (2019) to localize
the resolvent forcing and response modes on an airfoil. For this model, we modify
the operator so that,

LV = L − VI , (A.1)

where V = 1/g > 0, and g is the desired temporal decay rate. We then find the value
of V that best aligns the dominant resolvent and SPOD modes.

Figure A.1 presents the alignments for the linear damping case. Although lin-
ear damping improves alignments, the performance is significantly inferior to the
eddy-viscosity models, likely because of its monolithic damping effect over all
wavenumbers, whereas the eddy-viscosity methods directly address the effect of
the Reynolds stresses. Considering its suboptimal performance when compared
to eddy-viscosity models, we only present results for the " 9 = 0.4, < = 0, and
(C ∈ [0.05, 1] cases.
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Figure A.1: Optimal alignments for the linear damping term and the baseline case,
Re) = 3 × 104.
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A.2 Governing equations
Conservation of mass, momentum, and energy for a compressible, Newtonian fluid
are written as,

�d
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= −dΘ (A.2)
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respectively, where Θ = ∇ · u is the dilatation. We take %A∞ = 0.7 and W = 1.4
as constants. The equations have been made nondimensional with the jet density
(d 9 ), speed (* 9 ) , and diameter, �. The nondimensional viscosity, ` = 1

'4 9
, is also

a constant.

Applying the Reynolds decomposition (i.e. q(x, C) = q̄(x) + q′(x, C)) to the above
equations and separating terms that are linear and nonlinear in the fluctuations to
the left- and right-hand side, respectively, gives
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with �̄
�C
= m

mC
+ u · ∇, and where we have grouped all the nonlinear terms as forcing

terms on the right-hand side.

The left-hand side is then transformed to a cylindrical coordinate frame and Fourier
transformed in time (l) and azimuth (<). The resulting equations are discretized
as discussed in § 2.2.
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The eddy-viscosity model we use, discussed in § 2.2, simply replaces ` in Equa-
tions (A.5) to (A.7) with ` + `) (G, A).

A.3 Optimizing in an input and output framework
In resolvent analysis, it is often useful to restrict the input and output spaces by
writing

L)q = Bf (A.8)

y = Cq

y = CL−1
) Bf (A.9)

whereC transforms the state vector to a desired output spacey andBmaps a smaller
dimensional input space to the state space. Here we show that such additions do not
hinder the generality of the optimization presented in this thesis.

The structure of the cost function does not change,

J = u∗1Wyψ1ψ
∗
1Wyu1 − ;2µ∗)Mµ) + 2.2, (A.10)

but the SPODmodes,ψ, and the resolvent modes, u, are now computed considering
the observable y and the appropriate norms for the input and output space are
defined by including weighting matricesWy andW 5 , respectively. The Lagrangian
functional also takes a similar form as § 2.3,

L = u∗1Wyψ1ψ
∗
1Wyu1 − ;2µ∗)Mµ) − ũ∗1

(
u1 −CL−1

) Bv1
)

(A.11)
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1Wfv1
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(
u∗1Wyu1 − 1

)
+ 2.2,

where, ũ1, ṽ1, σ̃1 are the Lagrange multipliers. The effective composition of the
functional is identical to that of the full-state optimization as it is composed of
the cost function, the forward solution, the resolvent eigenvalue problem, and a
normalization constraint. Taking variations with respect to each variable, with
exception to the eddy-viscosity term, results in the following system of equations,

I W ∗
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B Wyu1

B∗L−∗
)
C∗ f2

1W
∗
f

0
0 v∗1Wf 0
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 , (A.12)

whose solution provides the Lagrange multipliers, ũ1, ṽ1, f̃1.

A difficulty that arises in building Equation A.12 is that the term L−1
)

is a large,
dense matrix. When L, B, C, and the weighting matrices are sparse, we may
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instead introduce auxiliary variables through

L) η̃1 = Bũ1

L∗) ζ̃1 = C
∗ṽ1,

whereupon Equation A.12 may be written as a larger, but now sparse, system of
equations
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The above presents a general optimization framework for aligning any input-output
resolvent analysis to data (i.e. here we use SPODmodes, but	 need not be restricted
to SPODmodes). Variations with respect to any parameter of the resolvent operator
may now be made to investigate their effect on modeling (or assimilating) known
quantities.
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A p p e n d i x B

LIFT-UP, KELVIN-HELMHOLTZ AND ORR MECHANISMS IN
TURBULENT JETS

B.1 Transonic and supersonic jets
This section presents similar results supporting the presence of the lift-up mecha-
nisms and streaks for " 9 = 0.9 and " 9 = 1.5 turbulent round jets. We first show
the azimuthal frequency-wavenumber maps for each of the jets in Figure B.1 and
Figure B.2. For both Figures, there is significant qualitative agreement between the
SPOD energies and the resolvent gains.

In the " 9 = 0.9 jet, we see a small spike at (C ∼ 0.4 for the resolvent analysis, due to
trapped acoustic modes, that is slightly over predicted when compared to the SPOD
energies. Another small discrepancy between SPOD and resolvent is the additional
influence of the < = 0 mode in the resolvent analysis when compared to SPOD.
However, both show large energies for < = 1 and at low frequencies, displaying
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Figure B.1: Modal energy from SPOD and resolvent analyses of the" 9 = 0.9 round
jet.
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Figure B.2: Modal energy from SPOD and resolvent analyses of the" 9 = 1.5 round
jet.

behavior similar to the " 9 = 0.4 jet with energy peaking at < = 2 as (C → 0.

For the" 9 = 1.5, jet there is a similar over-prediction by resolvent analysis for< = 0
when compared to SPOD. Despite this, the remainder of the resolvent map follows
SPOD characteristics quite well. For higher frequencies, energy is distributed across
multiple azimuthal wavenumbers, and at low frequencies both analyses display high-
energy behavior similar to the " 9 = 0.4 jet with energy peaking at< = 2 as (C → 0.

We also show the 3-D reconstructions of both the " 9 = 0.9 and 1.5 jet SPOD
modes at (C = 0 and < = 1, 3 shown in Figure B.3 using 1024 snapshots and 75%
overlap. All four plots show streaks of streamwise velocity response along with
the associated streamwise vorticity, with the clearest descriptions shown for the
< = 3 cases. The < = 3 case for both jets presents streaky structures paired with
streamwise vorticity rolls placed perfectly between each streak. The < = 1 plots are
not quite as appealing, but both plots present streaks in streamwise velocity and are
also paired with streamwise vorticity placed between each streak.

Finally, we show the resolvent analysis at (C = 0 for both jets and wavenumbers
< = 1, 3 in Figure B.4. Here, we show the same behavior as previously described
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Figure B.3: Three-dimensional reconstruction of the first SPOD mode (streamwise
velocity, ψ1 : DG , red-blue, streamwise vorticity, ψ1 : lG , yellow-green) as (C → 0
for < = 1 (left column) and < = 3 (right column) using isosurfaces of ±50% of the
maximum streamwise velocity and isosurfaces of±25% of themaximum streamwise
vorticity, with the exception of the" 9 = 1.5,< = 1, case where red-blue isosurfaces
are instead ±30% of the maximum streamwise velocity.
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Figure B.4: Global resolvent forcing and response for < = 1 (left) and < = 3,
(right) at (C = 0. The streamwise forcing vorticity is shown in magenta-cyan with
isosurfaces ±0.05‖v1 : lG ‖∞ for < = 1 and ±0.2‖v1 : lG ‖∞ for < = 3, streamwise
response vorticity is shown in yellow-green with isosurfaces ±0.5‖u1 : lG ‖∞, and
streamwise response velocity is shown in red-blue with isosurfaces ±0.25‖u1 :
DG ‖∞.
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Figure B.5: Modal energy from SPOD and resolvent analyses of a Mach 0.4 round
jet, shown here in semi-discrete form.

for the " 9 = 0.4 jet. Forcing in the form of streamwise vorticity begins upstream
near the nozzle, followed by responses of streamwise rolls, that then lead to lift-up
and large streamwise velocity responses. Considering all of the presented evidence
for " 9 = 0.9 and 1.5 jets, we conclude that the lift-up mechanism is present in all
turbulent jets.

B.2 SPOD and resolvent semi-discrete energy maps for Mach 0.4
FigureB.5 gives the semi-discrete, continuous in frequency and discrete in azimuthal
wavenumber, representation of Figure 3.4. Through both representations of SPOD
and resolvent analyses, we can make similar conclusions as the interpolated results
of Figure 3.4. We can clearly see the shift from the KH-dominated space at < = 0
as frequency is decreased to the Orr dominated region. For non-zero azimuthal
wavenumbers we see significant energy for frequencies approaching 0 and find
< = 2 has the largest energetic contribution for (C ≈ 0.
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A p p e n d i x C

RESOLVENT-BASED MODELING OF TURBULENT JET NOISE

C.1 Derivation of the Kirchhoff Surface
We begin with the homogeneous wave equation:

m2?′

mC2
− ∇2?′ = 0 (C.1)

where ?′ is a function of G, A, \, C and can be expressed, due to stationarity in
time and homogeneity in the azimuthal and streamwise direction, as ?′(G, A, \, C) =
?̂(A)4−8lC+−8<\−8:G . Applying this definition of the pressure the wave equation gives
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1
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m ?̂

mA
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2

A2 − :
2
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?̂ = 0, (C.2)

and with a general solution of

?̂< (A, :, l) = 21�< (
√
l2 − :2A) + 22.< (

√
l2 − :2A), (C.3)

and by satisfying the Sommerfeld radiation condition reduces the expression to

?̂< (A, :, l) = 2(:, l)�< (
√
l2 − :2A). (C.4)

This leaves one to solve for the unknown coefficients by using the surface at the edge
of the boundary, A = '

2(:, l) = ?̂< (', :, l)/�< (
√
l2 − :2') (C.5)

Therefore the particular solution is thus (as reported by Freund (2001)),

?̂< (A, :, l) = ?̂< (', :, l)�< (
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l2 − :2A)/�< (

√
l2 − :2'). (C.6)
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